A Computer Science
PWSP ective

| WINFRIEDKARL GRASSMANN
JEAN-PAUL TREMBLAY

LOGIC AND DISCRETE
MATHEMATICS

A Computer Science Perspective

WINFRIED KARL GRASSMANN

Department of Comjfh
University of Sas

v 2
JEAN-PAUL T EMBL@ jj} =]

Department of Com
University of Saskatchewan

PRENTICE HALL Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data

Grassmann, Winfried K.
Logic and discrete mathematics : a computer science perspective /
Winfried Karl Grassmann, Jean-Paul Tremblay.
p. cm.
Includes bibliographical references and index. *
ISBN 0-13-501206-6

1. Computer science — Mathematics. I. Tremblay, Jean-Paul
11. Title.
QA76.9.M35G725 1996
005.1°01°5113—dc20 95-38351
CIP
AC

Acquisitions editor: Alan Apt

Editorial/production supervision: Maes Associates
Copy editor: William O. Thomas

Cover designer: Bruce Kenselaar

Manufacturing buyer: Donna Sullivan

© 1996 by Prentice-Hall, Inc.
= Simon & Schuster/A Viacom Company
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

109 87 6 5 4 3 21

ISBN 0-13-50120k-k

PreNTICE-HALL INTERNATIONAL (UK) LiMITED, London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sidney
PreNTICE-HALL CANADA INC., Toronto

PreNTICE-HALL HiISPANOAMERICANA, S.A ., Mexico
PRENTICE-HALL OF INDIA PrIVATE LIMITED, New Delhi
PReNTICE-HALL OF JAPAN, INC., Tokyo

SiMON & SCHUSTER Asia PTE. L1b., Singapore

Epitoria PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

To my wife Louise Grassmann and
to my children Stephanie and Bettina Grassmann
—WK.G.

To my wife Deanna Tremblay and
to my grandchildren
Robert, Leanne, Lisa, and Nicole Tremblay
—J.PT.

Preface

Most universities require that a course in discrete mathematics be taken by every under-
graduate computer science student, and rightly so. Indeed, discrete mathematics gives the
appropriate theoretical foundations for computer science, foundations that are not only ben-
eficial for doing theoretical computer science, but also for the practice of computer science
as evidenced by the recent proliferation of books on formal methods. The areas covered in
a course in discrete mathematics vary, but they traditionally include logic, sets, relations,
functions, and graphs. All these topics are included in this book. Moreover, this book
reflects several recent trends in computer science. In particular, it gives a more thorough
exposure to logical reasoning than most other texts. It also shows how to use discrete
mathematics and logic for specifying new computer applications and how to reason about
programs in a systematic way. The book contains chapters on languages and grammars, the
Z specification language, and relational databases. There is a chapter describing Prolog,
a programming language based on logic, and a section discussing Miranda, a language
based on functions. In all chapters, numerous examples relate the mathematical concepts
to problems in computer science. We found that such examples are essential for keeping
the student motivated.

The outline of the book is as follows. Chapter 1 covers propositional calculus. We
also define what is to be understood by a formal derivation. In fact, formal derivations are
introduced as refinements of the type of logical reasoning we use in daily life. The chapter
also contains an extensive discussion on algebraic manipulation of logical expressions.

Chapter 2 discusses predicate calculus. We cover predicates and quantifiers, and
we try again to relate this theory to everyday thinking. Chapter 2 also introduces uni-
fication, a topic that is needed in order to understand logical languages such as Prolog

XV

xvi Preface

(covered in Chapter 4) and resolution theorem proving (described in Chapter |1). Chapter
2 also introduces equational logic. Equational logic is concerned with the manipulation of
mathematical equations, and this is obviously of fundamental importance. As it turns out,
equational logic is closely related to functions, and indeed, without functions, equational
logic would not have attained the dominance in mathematical reasoning which it now has.
This motivated us to introduce functions at this point.

Chapter 3 deals with induction and recursion, which is an important part of logic,
mathematics, and, above all, computer science. We discuss several proof methods, including
mathematical induction, strong induction, proof by recursion, and structural induction. The
notions of matrices and sums are also introduced. As an application, recursive programming
techniques are explored. This chapter also includes material on recursive functions and
decidability. Though recursive functions are very important, they constitute advanced
material which may be omitted.

Chapter 4 covers Prolog. The coverage is sufficient to allow the reader to write
nontrivial Prolog programs. The connections between logic and Prolog are also explored.
A section in Chapter 4 explains what kind of logical statements can be translated into
Prolog. Another section shows how to use Prolog to program manipulations involving
logical expressions. The study of Prolog also reinforces the concept of recursion, since
almost every nontrivial Prolog program makes use of recursion.

Computer scientists deal with many different types of objects, which can in turn be
combined in different ways. To understand these compound objects and their manipula-
tion, the student has to understand the concepts of sets and relations, which are discussed
in Chapter 5. The important operations on these constructs are described by numerous
examples, many of which are directly related to computer applications.

Chapter 6 deals with several topics regarding functions, such as algorithmic analysis
and computational complexity. These concepts are illustrated with a number of important
examples. In addition to the topics mentioned, the language Miranda is introduced as an
example of a functional language.

Chapter 7 gives an overview of graphs and trees, concepts that are fundamental to
computer science. In addition to introducing basic terminology dealing with paths, reach-
ability, and connectedness, the emphasis in this chapter is on computing paths, minimum
paths, minimum weighted paths, spanning trees, and minimum spanning trees for weighted
graphs. This chapter concludes with a discussion of the application of graphs to project
planning and management.

Chapter 8 is about Z, a language applying concepts from logic and set theory for
specifying and analyzing requirements in software development.

Chapter 9 shows how to use logic, and to a certain extent sets and functions, to reason
about programs. As in Chapters | and 2, we start with commonsense reasoning, and we
introduce formal correctness proofs as a refinement of normal reasoning.

Chapter 10 deals with context-free grammars as a vehicle for defining the syntax of
programming languages and their use in syntax analysis. Emphasis is given to an LL(1)
parser generator system.

Chapter 11 gives additional information about derivations. In particular, it shows how
to use natural deduction and the techniques of resolution theorem proving.

Preface Xvii

The book concludes with a discussion of relational databases in Chapter 12. This
chapter first focuses on the relational data model and its associated relational algebra. An
alternative way of describing‘qucries based on predicate calculus is also given. Finally, an
overview of a structured query language for specifying queries is given.

This text would appeal to a student in computer science at the freshman (second
term), sophomore, or junior level. Preliminary versions of this book were used in a one-
semester course given to second-year computer science students. In this course, most of
the material contained in Chapters | through 6 was covered. To this, we selectively added
topics from Chapters 7 through 12. However, the book contains enough material for a full
year course, but in discrete mathematics, such courses are not normally offered. Whatever
the length of the course, it should lay the mathematical foundations for many classes, in-
cluding classes in database design, syntactical analysis and parsing, artificial intelligence,
programming languages, logic programming, functional languages, and computer hard-
ware.

The application chapters allow the instructors to shift the emphasis according to their
interests. In all cases, the material of Chapters 1, 2, and 5 is essential, and most instructors
want to cover Section 6.1, which discusses functions. With respect to the other chapters,
we would like to suggest the following four scenarios, which can be combined or altered,
depending on the preferences of the instructor.

Emphasis on Procedural Programming For procedural programming, recursion
is very important, and this is covered in Chapter 3. The same chapter contains a
discussion of recursive functions, and it shows what can and what cannot be solved
by computers. Section 6.3 gives an introduction to comrputational complexity
which should prove useful to the student. The instructor may also want to cover
Chapter 7, which discusses graphs and trees, and Chapter 9, which shows how to
prove that a program is correct.

Emphasis on Logic and Logic Programming Since recursion is very important
for all types of logic programming, the instructor should cover recursion, which
is described in Chapter 3. Chapter 4 then gives an extensive treatment of Prolog.
At this point, Chapter 10, grammars and languages, and Chapter 11, which shows
resolution theorem proving, provide suitable topics. A

Emphasis on Functions and Functional Programming To provide a functional
programming emphasis, all of Chapter 3 should be covered. From Chapter 6,
Sections 6.1 and 6.3 are important. Of course, Section 6.5, Miranda, is central under
this scenario. For the remaining topics, the instructor may select material from
Chapter 8, requirement specification, Chapter 9, correctness proofs, and Chapter
10, grammars and languages.

Emphasis on Information Systems The slant to systems analysis requires some
knowledge of graphs and trees as it is discussed in Chapter 7, which in turn have
the first two sections of Chapter 3 as a prerequisite. Other relevant material can be
found in Chapters 8 (specification in Z) and 12 (relational database systems).

xviii Preface

The text is geared to the student, and every effort has been made to explain the
material as clearly as possible. In general, we motivate all concepts and derivations by
means of examples, preferably examples from computer science. This approach allows for
an informal introduction to the topic that can be formalized later. This gradual approach
helps the students to appreciate the value of formal arguments and prepares them for their
later studies in computer science.

As teaching and learning aids, the book includes more than 300 examples and more
than 550 problems with detailed solutions provided for all even-numbered problems.

We would like to thank Wayne Mackrell, Christy Kenny, David Haugen, Allan Rem-
pel, Jacob Wickland, and Michael Zaleski for their help in entering the manuscript and
suggesting improvements to the text. Wayne and Christy have also assisted us in formulat-
ing solutions to the problems and in producing the computer-generated diagrams. A special
thank you to Cyril Coupal who suggested the title of the book. Deanna Tremblay proofread
many versions of the manuscript during its period of preparation.

We would like to thank our colleagues for their valuable help. Jim Greer read and
commented on the first three chapters. Eric Neufeld and Grant Cheston made important
suggestions for which we are very grateful. John Cooke read and commented on the
relational database chapter.

Finally, we thank the students who used earlier versions of these notes and who made
many valuable comments.

Winfried Karl Grassmann
Jean-Paul Tremblay

Contents

Preface xv

Propositional Calculus

1.1 Logical Arguments and
1.1.1 Introduction 1

1
Propositions 1

1.1.2 Some Important Logical Arguments 2

1.1.3 Propositions 4

1.2 Logical Connectives 6
1.2.1 Introduction 6
1.2.2 Negation 6
1.2.3 Conjunction 7
1.2.4 Disjunction 8
1.2.5 Conditional 9
1.2.6 Biconditional 11

1.2.7 Further Remarks on Connectives 12

1.3 Compound Propositions
1.3.1 Introduction 13
1.3.2 Logical Expression
1.3.3 Analysis of Compo
1.3.4 Precedence Rules

13

s 13
und Propositions 15
18

1.3.5 Evaluation of Expressions and Truth Tables

1.3.6 Examples of Comp

ound Propositions 21

1.4 Tautologies and Contradictions 23

1.4.1 Introduction 23
1.4.2 Tautologies 24

19

vi Contents

1.4.3 Tautologies and Sound Reasoning 26
1.44 Contradictions 26
1.4.5 Important Types of Tautologies 27

1.5 Logical Equivalences and Their Use 28
1.5.1 Introduction 28
1.5.2 Proving Logical Equivalences by Truth Tables 29
1.5.3 Statement Algebra 30
1.5.4 Removing Conditionals and Biconditionals 32
1.5.5 Essential Laws for Statement Algebra 33
1.5.6 Shortcuts for Manipulating Expressions 34
1.5.7 Normal Forms 36
1.5.8 Truth Tables and Disjunctive Normal Forms 38
1.5.9 Conjunctive Normal Forms and Complementation 40

1.6 Logical Implications and Derivations 42
1.6.1 Introduction 42
1.6.2 Logical Implications 43
1.6.3 Soundness Proofs through Truth Tables 44
1.6.4 Proofs 46
1.6.5 Systems for Derivations 49
1.6.6 The Deduction Theorem 52

2 Predicate Calculus 59

2.1 Syntactic Components of Predicate Calculus 60
2.1.1 Introduction 60
2.1.2 The Universe of Discourse 60
2.1.3 Predicates 61
2.1.4 Variables and Instantiations 63
2.1.5 Quantifiers 65
2.1.6 Restrictions of Quantifiers to Certain Groups 68

2.2 Interpretations and Validity 70
2.2.1 Introduction 70
2.2.2 Interpretations 71
223 Validity 74
2.2.4 Invalid Expressions 76
2.2.5 Proving Validity 78

2.3 Derivations 79
2.3.1 Introduction 79
2.3.2 Universal Instantiation 80
2.3.3 Universal Generalization 81
2.3.4 Deduction Theorem and Universal Generalization 84
2.3.5 Dropping the Universal Quantifiers 85
2.3.6 Existential Generalization 87
2.3.7 Existential Instantiation 88

Contents vii

2.4 Logical Equivalences 92
2.4.1 [Introduction 92
2.4.2 Basic Logical Equivalences 92
2.4.3 Other Important Equivalences 94

2.5 Equational Logic 96
2.5.1 Introduction 96
2.5.2 Equality 96
2.5.3 Equality and Uniqueness 99
2.5.4 Functions and Equational Logic 100
2.5.5 Function Compositions 103
2.5.6 Properties of Operators 105
2.5.7 Identity and Zero Elements 108
2.5.8 Derivations in Equational Logic 111
2.5.9 Equational Logic in Practice 113
2.5.10 Boolean Algebra 115

3 Induction and Recursion 121

3.1 Induction on Natural Numbers 122
3.1.1 Introduction 122
3.1.2 Natural Numbers 123
3.1.3 Mathematical Induction 124
3.1.4 Induction for Proving Properties of Addition 128
3.1.5 Changing the Induction Base 130
3.1.6 Strong Induction 131

3.2 Sums and Related Constructs 132
3.2.1 Introduction 132
3.2.2 Recursive Definitions of Sums and Products 133
3.2.3 Identities Involving Sums 135
3.2.4 Double Sums and Matrices 139

3.3 Proof by Recursion 141
3.3.1 Introduction 141
3.3.2 Recursive Definitions 143
3.3.3 Descending Sequences 146
3.3.4 The Principle of Proofs by Recursion 147
3.3.5 Structural Induction 149

3.4 Applications of Recursion to Programming 154
3.4.1 Introduction 154
3.4.2 Programming as Function Composition 154
3.4.3 Recursion in Programs 158
3.4.4 Programs Involving Trees 163

3.5 Recursive Functions 166
3.5.1 Introduction 166
3.5.2 Primitive Recursive Functions 168

viii Contents

3.5.3 Programming and Primitive Recursion 172
3.5.4 Minimalization 173

4 Prolog 178

4.1 Basic Prolog 178
4.1.1 Introduction 178
4.1.2 Facts, Rules, and Queries 179
4.1.3 Derivations Involving Facts 181
4.14 Derivations Involving Rules 183
4.1.5 Instantiations and Unification 186
4.1.6 Backtracking 188
4.1.7 Resolution 190

4.2 Running and Testing Programs 193
4.2.1 Introduction 193
4.2.2 Prolog Compilers and Interpreters 194
4.2.3 Consulting a Database 194
4.24 Debugging and Tracing 196

4.3 Additional Features of Prolog 197
4.3.1 Introduction 197
4.3.2 Input and Output 197
4.3.3 Structures 198
4.3.4 Infix Notation 199
4.3.5 Arithmetic 200
4.3.6 Equality Predicates 201

4.4 Recursion 203
4.4.1 Introduction 203
4.4.2 Recursive Predicates 204
443 Termination 205
4.44 Loops and Prolog 207
4.4.5 Lists 208
4.4.6 Recursive Predicates Involving Lists 210
4.47 Successive Refinement 213

4.5 Negation in Prolog 215
4.5.1 Introduction 215
4.5.2 Prolog as a Logic Language 215
4.5.3 Negation as Failure 218
454 Use of the Clause Order 219
455 Cuts 220

4.6 Application of Prolog to Logic 222
4.6.1 Introduction 222
4.6.2 Lists as Logical Expressions 222
4.6.3 Representing Logical Expressions as Structures 224

Contents

5 Sets and Relations 230

5.1

5.2

53

54

Sets and Set Operatians 230

5.1.1 Introduction 230

5.1.2 Sets and Their Members 231

5.1.3 Subsets 233

5.1.4 Intersections 235

5.1.5 Unions 236

5.1.6 Differences and Complements 237
5.1.7 Expressions Involving Sets 239

Tuples, Sequences, and Powersets 243
5.2.1 Introduction 243

5.2.2 Tuples and Cartesian Products 244
5.2.3 Sequences and Strings 246

5.2.4 Powersets 247

5.2.5 Types and Signatures 248

Relations 251

5.3.1 [Introduction 251

5.3.2 Relations and Their Representation 252
5.3.3 Domains and Ranges 254

5.3.4 Some Operations on Relations 255
5.3.5 Composition of Relations 257

5.3.6 Examples 261

Properties of Relations 263
5.4.1 Introduction 263

5.4.2 Relations on a Set 263
5.4.3 Reflective Relations 264
5.4.4 Symmetric Relations 266
5.4.5 Transitivity 267

5.4.6 Closures 269

5.4.7 Equivalence Relations 270
5.4.8 Partial Orders 272

6 More About Functions 281

6.1 Representations and Manipulations Involving Functions

6.1.1 Introduction 281

6.1.2 Definitions and Notation 282

6.1.3 Representations of Functions 285

6.1.4 The Lambda Notation 286

6.1.5 Restrictions and Overloading 287

6.1.6 Composition of Functions 289

6.1.7 Injections, Surjections, and Inverses 292
6.1.8 Creating Inverses by Creating Types 296

281

Contents

6.2 Enumerations, Isomorphisms, and Homomorphisms 299
6.2.1 Introduction 299¢
6.2.2 Enumerations 300
6.2.3 Countable and Uncountable Sets 302
6.2.4 Permutations and Combinations 305
6.2.5 Isomorphisms and Homomorphisms 307

6.3 Computational Complexity 311
6.3.1 Introduction 311
6.3.2 Polynomials and Polynomial-time Algorithms 312
6.3.3 Functions and Algorithms Related to Exponentials 316
6.3.4 The Limits of Computability 320
6.3.5 Asymptotic Analysis 321
6.3.6 Divide and Conquer 326
6.3.7 Nondeterministic Polynomial 329

6.4 Recurrence Relations 332
6.4.1 Introduction 332
6.4.2 Homogeneous Recurrence Relations 333
6.4.3 Nonhomogeneous Recurrence Relations 336

6.5 Miranda 341
6.5.1 Introduction 341
6.5.2 Command Level 341
6.5.3 Function Definitions 342
6.5.4 Types, Functions, and Declarations 344
6.5.5 Pattern Matching and Rewriting 346
6.5.6 A Programming Problem 348

Graphs and Trees 353

7.1 Introduction and Examples of Graph Modeling 354
7.2 Basic Definitions of Graph Theory 362
7.3 Paths, Reachability, and Connectedness 369
7.4 Computing Paths from a Matrix Representation of Graphs 377
7.5 Traversing Graphs Represented as Adjacency Lists 392
7.5.1 Introduction 392
7.5.2 Adjacency Lists Representation of Graphs 392
7.5.3 Breadth-first Search 395
7.5.4 Depth-first Search 398
7.5.5 Dijkstra’s Algorithm for Finding Minimum Paths 402

7.6 Trees and Spanning Trees 409
7.6.1 Introduction 409
7.6.2 Free Trees 409
7.6.3 Spanning Trees 410
7.6.4 Minimum Spanning Trees 416

Contents

7.7 Scheduling Networks 422
7.7.1 Introduction 422
7.7.2 A Project Management Model 422
7.7.3 Topological Sorting 431

8 Formal Requirement Specification in Z 441

8.1 Introduction 441
8.2 Software Life Cycle 442
8.3 Need for Formal Specifications 446
8.4 Introductionto Z 447
8.4.1 Introduction 447
8.4.2 Alphabet and Lexical Elements 448
8.4.3 Types and Declarations 449
8.4.4 Specifying a System with Logic and Sets 450
8.4.5 Schemas 454
8.4.6 Relations 460
8.4.7 Functions 466
8.4.8 Sequences 472

9 Program Correctness Proofs 481

9.1 Preliminary Concepts 482
9.1.1 Introduction 482
9.1.2 Programs and Codes 482
9.1.3 Assertions 483
9.1.4 Correctness 485

9.2 General Rules Involving Preconditions and Postconditions 486
9.2.1 Introduction 486
9.2.2 Precondition Strengthening 487
9.2.3 Postcondition Weakening 488
9.2.4 Conjunction and Disjunction Rules 490

9.3 Correctness Proofs in Loopless Code 493
9.3.1 Introduction 493
9.3.2 Assignment Statements 493
9.3.3 Concatenation of Code 496
9.3.4 The If-Statement 500

9.4 Loops and Arrays 503
9.4.1 Introduction 503
9.4.2 A Preliminary While Rule 503
9.4.3 The General While Rule 508
944 Arrays 510
9.4.5 Program Termination 515

Xii Contents

10 Grammars, Languages, and Parsing 519

10.1 Languages and Grammars 520
10.1.1 Introduction 520
10.1.2 Discussion of Grammars 521
10.1.3 Formal Definition of a Language 525
10.1.4 Notions of Syntax Analysis 529
10.1.5 Ambiguous Grammars 535
10.1.6 Reduced Grammars 540
10.2 Top-down Parsing 545
10.2.1 Introduction 545
10.2.2 General Top-down Parsing Strategy 546
10.2.3 Deterministic Top-down Parsing with LL(1) Grammars 547

11 Derivations 564

11.1 Derivations in Propositional Calculus 564
11.1.1 Introduction 564
11.1.2 Basics of Natural Derivation 565
11.1.3 Implementation of the Deduction Theorem 565
11.1.4 Resolution 568

11.2 Some Results from Predicate Calculus 574
11.2.1 Introduction 574
11.2.2 Complements 575
11.2.3 Prenex Normal Forms 576

11.3 Derivations in Predicate Calculus 577
11.3.1 Introduction 577
11.3.2 Canonical Derivations 578
11.3.3 Quantifiers in Natural Deduction 582
11.3.4 Replacing Quantifiers by Functions and Free Variables 583
11.3.5 Resolution in Predicate Calculus 585

12 An Overview of Relational Database Systems 592
12.1 Basic Concepts 593
12.1.1 Introduction 593
12.1.2 Definitions and Concepts 593
12.1.3 Introductory Example of a Relational Database 593
12.1.4 Overview of a Database System 597
12.2 Relational Data Model 600
12.2.1 Introduction 600
12.2.2 Overview of the Relational Structure 600
12.2.3 Relations and Their Schemas 602

Contents

xiii

12.2.4 Representing Relations in the Relational Model 603
12.2.5 Integrity Rules 604
t

12.3 Relational Algebra 605

12.3.1 Introduction 605

12.3.2 Basic Operations 605

12.3.3 Additional Relational Operations 607
12.3.4 Examples 614

12.4 Relational Calculus 620

12.4.1 Introduction 620
12.4.2 Tuple Calculus 620
1243 Examples 622

12.5 Structured Query Language 624

12.5.1 Introduction 624
12.5.2 Data Definition 625
12.5.3 Data Management 626
12.5.4 Data Queries 627

12.6 Concluding Remarks 637

Bibliography 641

Solutions to Even-numbered Problems 644

Index 736

