A Computer Science
PWSP ective

| WINFRIEDKARL GRASSMANN
JEAN-PAUL TREMBLAY




LOGIC AND DISCRETE
MATHEMATICS

A Computer Science Perspective

WINFRIED KARL GRASSMANN

Department of Comjfh
University of Sas

v 2
JEAN-PAUL T EMBL@ jj} =]

Department of Com
University of Saskatchewan

PRENTICE HALL Upper Saddle River, New Jersey 07458



Library of Congress Cataloging-in-Publication Data

Grassmann, Winfried K.
Logic and discrete mathematics : a computer science perspective /
Winfried Karl Grassmann, Jean-Paul Tremblay.
p. cm.
Includes bibliographical references and index. *
ISBN 0-13-501206-6

1. Computer science — Mathematics. I. Tremblay, Jean-Paul
11. Title.
QA76.9.M35G725 1996
005.1°01°5113—dc20 95-38351
CIP
AC

Acquisitions editor: Alan Apt

Editorial/production supervision: Maes Associates
Copy editor: William O. Thomas

Cover designer: Bruce Kenselaar

Manufacturing buyer: Donna Sullivan

© 1996 by Prentice-Hall, Inc.
= Simon & Schuster/A Viacom Company
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

109 87 6 5 4 3 21

ISBN 0-13-50120k-k

PreNTICE-HALL INTERNATIONAL (UK) LiMITED, London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sidney
PreNTICE-HALL CANADA INC., Toronto

PreNTICE-HALL HiISPANOAMERICANA, S.A ., Mexico
PRENTICE-HALL OF INDIA PrIVATE LIMITED, New Delhi
PReNTICE-HALL OF JAPAN, INC., Tokyo

SiMON & SCHUSTER Asia PTE. L1b., Singapore

Epitoria PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro



To my wife Louise Grassmann and
to my children Stephanie and Bettina Grassmann
—WK.G.

To my wife Deanna Tremblay and
to my grandchildren
Robert, Leanne, Lisa, and Nicole Tremblay
—J.PT.



Preface

Most universities require that a course in discrete mathematics be taken by every under-
graduate computer science student, and rightly so. Indeed, discrete mathematics gives the
appropriate theoretical foundations for computer science, foundations that are not only ben-
eficial for doing theoretical computer science, but also for the practice of computer science
as evidenced by the recent proliferation of books on formal methods. The areas covered in
a course in discrete mathematics vary, but they traditionally include logic, sets, relations,
functions, and graphs. All these topics are included in this book. Moreover, this book
reflects several recent trends in computer science. In particular, it gives a more thorough
exposure to logical reasoning than most other texts. It also shows how to use discrete
mathematics and logic for specifying new computer applications and how to reason about
programs in a systematic way. The book contains chapters on languages and grammars, the
Z specification language, and relational databases. There is a chapter describing Prolog,
a programming language based on logic, and a section discussing Miranda, a language
based on functions. In all chapters, numerous examples relate the mathematical concepts
to problems in computer science. We found that such examples are essential for keeping
the student motivated.

The outline of the book is as follows. Chapter 1 covers propositional calculus. We
also define what is to be understood by a formal derivation. In fact, formal derivations are
introduced as refinements of the type of logical reasoning we use in daily life. The chapter
also contains an extensive discussion on algebraic manipulation of logical expressions.

Chapter 2 discusses predicate calculus. We cover predicates and quantifiers, and
we try again to relate this theory to everyday thinking. Chapter 2 also introduces uni-
fication, a topic that is needed in order to understand logical languages such as Prolog
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xvi Preface

(covered in Chapter 4) and resolution theorem proving (described in Chapter |1). Chapter
2 also introduces equational logic. Equational logic is concerned with the manipulation of
mathematical equations, and this is obviously of fundamental importance. As it turns out,
equational logic is closely related to functions, and indeed, without functions, equational
logic would not have attained the dominance in mathematical reasoning which it now has.
This motivated us to introduce functions at this point.

Chapter 3 deals with induction and recursion, which is an important part of logic,
mathematics, and, above all, computer science. We discuss several proof methods, including
mathematical induction, strong induction, proof by recursion, and structural induction. The
notions of matrices and sums are also introduced. As an application, recursive programming
techniques are explored. This chapter also includes material on recursive functions and
decidability. Though recursive functions are very important, they constitute advanced
material which may be omitted.

Chapter 4 covers Prolog. The coverage is sufficient to allow the reader to write
nontrivial Prolog programs. The connections between logic and Prolog are also explored.
A section in Chapter 4 explains what kind of logical statements can be translated into
Prolog. Another section shows how to use Prolog to program manipulations involving
logical expressions. The study of Prolog also reinforces the concept of recursion, since
almost every nontrivial Prolog program makes use of recursion.

Computer scientists deal with many different types of objects, which can in turn be
combined in different ways. To understand these compound objects and their manipula-
tion, the student has to understand the concepts of sets and relations, which are discussed
in Chapter 5. The important operations on these constructs are described by numerous
examples, many of which are directly related to computer applications.

Chapter 6 deals with several topics regarding functions, such as algorithmic analysis
and computational complexity. These concepts are illustrated with a number of important
examples. In addition to the topics mentioned, the language Miranda is introduced as an
example of a functional language.

Chapter 7 gives an overview of graphs and trees, concepts that are fundamental to
computer science. In addition to introducing basic terminology dealing with paths, reach-
ability, and connectedness, the emphasis in this chapter is on computing paths, minimum
paths, minimum weighted paths, spanning trees, and minimum spanning trees for weighted
graphs. This chapter concludes with a discussion of the application of graphs to project
planning and management.

Chapter 8 is about Z, a language applying concepts from logic and set theory for
specifying and analyzing requirements in software development.

Chapter 9 shows how to use logic, and to a certain extent sets and functions, to reason
about programs. As in Chapters | and 2, we start with commonsense reasoning, and we
introduce formal correctness proofs as a refinement of normal reasoning.

Chapter 10 deals with context-free grammars as a vehicle for defining the syntax of
programming languages and their use in syntax analysis. Emphasis is given to an LL(1)
parser generator system.

Chapter 11 gives additional information about derivations. In particular, it shows how
to use natural deduction and the techniques of resolution theorem proving.
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The book concludes with a discussion of relational databases in Chapter 12. This
chapter first focuses on the relational data model and its associated relational algebra. An
alternative way of describing‘qucries based on predicate calculus is also given. Finally, an
overview of a structured query language for specifying queries is given.

This text would appeal to a student in computer science at the freshman (second
term), sophomore, or junior level. Preliminary versions of this book were used in a one-
semester course given to second-year computer science students. In this course, most of
the material contained in Chapters | through 6 was covered. To this, we selectively added
topics from Chapters 7 through 12. However, the book contains enough material for a full
year course, but in discrete mathematics, such courses are not normally offered. Whatever
the length of the course, it should lay the mathematical foundations for many classes, in-
cluding classes in database design, syntactical analysis and parsing, artificial intelligence,
programming languages, logic programming, functional languages, and computer hard-
ware.

The application chapters allow the instructors to shift the emphasis according to their
interests. In all cases, the material of Chapters 1, 2, and 5 is essential, and most instructors
want to cover Section 6.1, which discusses functions. With respect to the other chapters,
we would like to suggest the following four scenarios, which can be combined or altered,
depending on the preferences of the instructor.

Emphasis on Procedural Programming For procedural programming, recursion
is very important, and this is covered in Chapter 3. The same chapter contains a
discussion of recursive functions, and it shows what can and what cannot be solved
by computers. Section 6.3 gives an introduction to comrputational complexity
which should prove useful to the student. The instructor may also want to cover
Chapter 7, which discusses graphs and trees, and Chapter 9, which shows how to
prove that a program is correct.

Emphasis on Logic and Logic Programming Since recursion is very important
for all types of logic programming, the instructor should cover recursion, which
is described in Chapter 3. Chapter 4 then gives an extensive treatment of Prolog.
At this point, Chapter 10, grammars and languages, and Chapter 11, which shows
resolution theorem proving, provide suitable topics. A

Emphasis on Functions and Functional Programming To provide a functional
programming emphasis, all of Chapter 3 should be covered. From Chapter 6,
Sections 6.1 and 6.3 are important. Of course, Section 6.5, Miranda, is central under
this scenario. For the remaining topics, the instructor may select material from
Chapter 8, requirement specification, Chapter 9, correctness proofs, and Chapter
10, grammars and languages.

Emphasis on Information Systems The slant to systems analysis requires some
knowledge of graphs and trees as it is discussed in Chapter 7, which in turn have
the first two sections of Chapter 3 as a prerequisite. Other relevant material can be
found in Chapters 8 (specification in Z) and 12 (relational database systems).
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The text is geared to the student, and every effort has been made to explain the
material as clearly as possible. In general, we motivate all concepts and derivations by
means of examples, preferably examples from computer science. This approach allows for
an informal introduction to the topic that can be formalized later. This gradual approach
helps the students to appreciate the value of formal arguments and prepares them for their
later studies in computer science.

As teaching and learning aids, the book includes more than 300 examples and more
than 550 problems with detailed solutions provided for all even-numbered problems.

We would like to thank Wayne Mackrell, Christy Kenny, David Haugen, Allan Rem-
pel, Jacob Wickland, and Michael Zaleski for their help in entering the manuscript and
suggesting improvements to the text. Wayne and Christy have also assisted us in formulat-
ing solutions to the problems and in producing the computer-generated diagrams. A special
thank you to Cyril Coupal who suggested the title of the book. Deanna Tremblay proofread
many versions of the manuscript during its period of preparation.

We would like to thank our colleagues for their valuable help. Jim Greer read and
commented on the first three chapters. Eric Neufeld and Grant Cheston made important
suggestions for which we are very grateful. John Cooke read and commented on the
relational database chapter.

Finally, we thank the students who used earlier versions of these notes and who made
many valuable comments.

Winfried Karl Grassmann
Jean-Paul Tremblay
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