

Organometallic Chemistry

Volume 32

senior reporter M. GREEN

Organometallic Chemistry

Volume 32

A Review of the Literature Published During 2002

Senior Reporter

M. Green, University of Bristol, UK

Reporters

Simon Aldridge, University of Cardiff, UK

S.R. Boss, University of Cambridge, UK

John G. Brennan, State University of New Jersey, USA

A.J. Bridgeman, University of Hull, UK

lan R. Butler, University College of North Wales, Bangor, UK

S.D.R. Chrisite, University of Lo gnoorougn,

Marie P. Cifuentes, Australian National University & Susselv. UK

Matthew D. Francis, University if Sussex. UK W. Z. Mark G. Humphrey, Australian Lational University, Carlbert

Paul A. Jelliss, St Louis University, USA

Paul A. Jelliss, St Louis University, USA

Philip J. King, University of Hull UK.

Richard A. Layfield, University of Cambridge UK

C.M. Pask, University of Cambridge, UK

Andrea Sella, University College London, UK

J.J. Shotton, University of Loughborough, UK

G.A. Solan, University of Loughborough, UK

A.E.H. Wheatley, University of Cambridge, UK

Dominic S. Wright, University of Cambridge, UK

If you buy this title on standing order, you will be given FREE access to the chapters online. Please contact sales@rsc.org with proof of purchase to arrange access to be set up.

Thank you.

ISBN 0-85404-343-8 ISSN 0301-0074

A catalogue record for this book is available from British Library

© The Royal Society of Chemistry 2005

All rights reserved

Apart from any fair dealing for the purposes of research or private study, or criticism or review as permitted under the terms of the UK Copyright, Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Typeset by Vision Typesetting, Manchester, UK Printed by Athenaeum Press Ltd, Gateshead, Tyne & Wear

Preface

The interdisciplinary science known as Organometallic Chemistry continues to grow apace with important developments in catalysis, synthetic and theoretical main group, transition metal and lanthanide chemistry, all of which have possible important consequences for synthetic organic chemistry. As before it is a pleasure to thank all of this volume's contributors for capturing the excitement of this important area of science.

Michael Green

Abbreviations

Ac acetate

acac acetylacetonate

acacen N,N'-ethylenebis(acetylacetone iminate)

Ad adamantyl

AIBN azoisobutyronitrile

ampy 2-amino-6-methylpyridine

Ar aryl

Ar* 2,4,6-tri(*tert*-butyl)phenyl Ar'₁ 3,5-bis(trifluoromethyl)phenyl

arphos 1-(diphenylphosphino)-2-(diphenylarsino)ethane

ATP adenosine triphosphate

Azb azobenzene

9-BBN 9-borabicyclo[3.3.1]nonane BHT 2,6-dibutyl-4-methylphenyl

Biim biimidazole

BINAP 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl

bipy 2,2'-bipyridyl

Bis bis(trimethylsilyl)methyl

bma 2,3-bis(diphenylphosphino)maleic anhydride

BNCT boron neutron capture therapy

Bp biphenyl

bpcd 4,5-bis(diphenylphosphino)cyclopent-4-ene-1,3-dione

bpk benzophenone ketyl (diphenylketyl)

Bpz₄ tetra(1-pyrazolyl)borate

Bu¹2bpy 4,4'-di-tert-butyl-2,2'-bipyridine

t-bupy tert-butylpyridine

Bz benzyl

Bzac benzoylacetonate cbd cyclobutadiene

1,5,9-cdt cyclododeca-1,5,9-triene

chd cyclohexadiene chpt cycloheptatriene

CIDNP chemically induced dynamic nuclear polarisation

[Co] cobalamin

(Co) cobaloxime [Co(dmg)₂ derivative]

cod cycloocta-1,5-diene coe cyclooctene cot cyclooctatriene

CP/MAS cross polarisation/magnetic angle spinning

Cp η^5 -cyclopentadienyl Cp^R η^5 -alkylcyclopentadienyl

xvi Abbreviations

Cp* η⁵-pentamethylcyclopentadienyl
 Cp' trimethylsilylcyclopentadienyl
 Cp" tetramethylethylcyclopentadienyl
 CV cyclic voltammetry(ogram)
 CVD chemical vapour deposition

Cy cyclohexyl

Cyclam 1,4,8,11-tetraazacyclotetradecane

Cym p-cymene

Cyttp PhP(CH₂CH₂CH₂PCy₂)₂ dab 1,4-diazabutadiene

dabco 1,4-diazabicyclo[2.2.2]octane

dba dibenzylideneacetone

dbpe 1,2-bis(dibutylphosphino)ethane
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

DCA 9,10-dicyanoanthracene

depe 1.2-bis(diethylphosphino)ethane depm 1.2-bis(diethylphosphino)methane

DFT density functional theory diars o-phenylenebis(dimethyl)arsine

diarsop $\{[(2,2-dimethyl-1,3-dioxolan-4,5-diyl)bis(methylene)]\}$

bis[diphenylarsine];

dien diethylenetriamine

diop {[(2,2-dimethyl-1,3-dioxolan-4,5-diyl)bis(methylene)]bis-1-

[diphenylphosphine]}

DIPAMP 1.2-bis(phenyl-o-anisoylphosphino)ethane

diphos 1,2-bis(diphenylphosphino)ethane

dipp 2.6-diisopropylphenyl dipyam di-(2-pyridyl)amine

DMAD dimethyl acetylenedicarboxylate
DMAP 2-dimethylaminopyridine
dmbpy dimethylbipyridine
DME 1.2-dimethoxyethane
DMF N,N-dimethylformamide

dmg dimethylglyoximate

dmgH monoanion of dimethylglyoxime

dmgH₂ dimethylglyoxime DMP dimethylpiperazine

dmpe 1,2-bis(dimethylphosphino)ethane dmpm bis(dimethylphosphino)methane

dmpz 1,3-dimethylpyrazolyl DMSO dimethyl sulfoxide

dpae 1,2-bis(diphenylarsino)ethane dpam bis(diphenylarsino)methane dppa 1,2-bis(diphenylphosphino)ethyne dppb 1,4-bis(diphenylphosphino)butane dppbz 1,2-bis(diphenylphosphino)benzene dppe 1,2-bis(diphenylphosphino)ethane dppf 1,1'-bis(diphenylphosphino)ferrocene bis(diphenylphosphino)methane dppm dppp 1,3-bis(diphenylphosphino)propane

Abbreviations xvii

DSD diamond-square-diamond edt ethane-1,2-dithiolate EDTA ethylenediaminetetraacetate

ee enantiomeric excess

EELS electron energy loss spectroscopy
EH MO extended Hückel molecular orbital
ELF electron localisation function

en ethylene-1,2-diamine

ES MS electrospray mass spectrometry
EXAFS extended X-ray absorption fine structure

 F_6 acac hexafluoroacetylacetonate

 Fc
 ferrocenyl

 Fe*
 Fe(CO)2Cp*

 Fp
 Fe(CO)2Cp

Fp' Fe(CO)₂η'-(C₅H₄Me)
FTIR fourier transform infrared
FVP flash vacuum pyrolysis
glyme ethyleneglycol dimethyl ether
GVB generalised valence bond
HBpz3 tris(pyrazolyl)borate

HBpz*3 tris(3,5-dimethylpyrazolyl)borate H_4 cyclen tetraaza-1,4,7,10-cyclododecane

HEDTA N-hydroxyethylethylenediaminetetraacetate

hfa hexafluoroacetone

hfacac hexafluoroacetylacetonato

hfb hexafluorobutyne

HMPA hexamethyl phosphoric triamide
HNCC high nuclearity carbonyl cluster
HOMO highest occupied molecular orbital
IGLO individual gauge for localised orbitals

im imidazole

Is* 2,4,6-triisopropylphenyl

ISEELS inner shell electron energy loss spectroscopy KTp potassium hydrotris(1-pyrazolyl)borate

LDA lithium disopropylamide
LiDBB lithium di-tert-butylbiphenyl
LMCT ligand to metal charge transfer
LNCC low nuclearity carbonyl cluster

MAO methyl alumoxane

Me₂bpy 4,4'-dimethyl-2,2'-bypyridyl

Me₆[14]dieneN₄ 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-

diene

 $Me_6[14]N_4$ 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane

4,7-Me₂phen 4,7-dimethyl-1,10-phenanthroline 3,4,7,8-Me₄phen 3,4,7,8,-tetramethyl-1,10-phenanthroline

Mes mesityl

Mes* 2,4,6-tributylphenyl
MeTHF methyltetrahydrofuran
mcpba metachloroperbenzoic acid
MLCT metal-ligand charge transfer

xviii Abbreviations

MTO methylrhenium trioxide

nap l-naphthyl
nb norbornene
nbd norbornadiene
NBS N-bromosuccinimide
NCS N-chlorosuccinimide
NCT neutron capture theory

Neo neopentyl
Np 1-naphthyl
np₃ N(CH₂CH₂PPh₂)₃
nta nitrilotriacetate
OEP octaethylporphyrin

OTf trifluoromethanesulfonate (triflate)
OTs p-toluenesulfonate (tosylate)

Pc phthalocyanin

PES photoelectron spectroscopy

PMDT pentamethylenediethylenetetramine

pd pentane-2,4-dionate phen 1,10-phenanthroline pic pyridine-2-carboxylic acid

Pin (+)-pinanyl

Pmedta pentamethyldiethylenetriamine

pp₃ P(CH₂CH₂PPh₂)₃
[PPN]⁺ [(Ph₃P)₂N]⁺
py pyridine
pydz pyridazine
pz pyrazolyl

R-PROPHOS (R)-(+)-1,2-bis(diphenylphosphino)propane R,R-SKEWPHOS (2R,4R)-bis(diphenylphosphino)pentane

RDF radial distribution function

ROMP ring opening metathesis polymerisation

sal salicylaldehyde

salen N,N'-bis(salicylaldehydo)ethylenediamine saloph N,N-bisalicylidene-o-phenylenediamine

SCF self consistent field TCNE tetracyanoethylene

TCNQ 7,7,8,8-tetracyanoquinodimethane

terpy 2,2',2"-terpyridyl

tetraphos 1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane

TFA trifluoroacetic acid tfbb tetrafluorobenzobarrelene tfacac trifluoroacetylacetonato

THF tetrahydrofuran

thsa thiosalicylate (2-thiobenzoate)

tht tetrahydrothiophen

TMBD NNN'N"-tetramethyl-2-butene-1,4-diamine

TMEDA (tmena) tetramethylethylenediamine

tmp 2,2,6-6-tetramethylpiperidino

TMS tetramethylsilane

tol tolyl

Abbreviations xix

TP hydrotris(1-pyrazolyl)borate

TP* hydrotris(2,5-dimethylpyrazolyl)borate

TPP meso-tetraphenylporphyrin
Trip 2,4,6-triisopropylphenyl
Triph 2,4,6-(triphenyl)phenyl

triphos 1,1,1-tris(diphenylphosphinomethyl)ethane
TRIR time resolved infrared (spectroscopy)
Tsi tris(trimethylsilyl)methyl (Me₃Si)₃C

TTF tetrathiafulvalene

vi vinyl

WGSR water gas shift reaction

XPS X-ray photoelectron spectroscopy

Xyl xylyl

Contents

Chapter I	Theoretical Organometallic Chemistry			
	By A.J. Bridgeman			
	1 Introduction	1		
	2 s- and p-Block Metals	2		
	2.1 Structural and Spectroscopic Studies	2 2 7		
	2.2 Mechanistic Studies			
	3 d-and f-Block Metals	9		
	3.1 Structural and Spectroscopic Studies	9		
	3.2 Mechanistic Studies	20		
	References	29		
Chapter 2	Groups 1 and 11: The Alkali and Coinage Metals	39		
	By S.R. Boss and A.E.H. Wheatley			
	1 Alkali Metals	39		
	1.1 Introduction	39		
	1.2 Alkyl Derivatives	39		
	1.3 Alkenyl, Allyl, Vinyl, Alkynyl and Related Derivatives	41		
	1.4 Aryl Derivatives	42		
	1.5 Cyclopentadienyl and Related Derivatives	44		
	2 Copper, Silver and Gold	46		
	2.1 Introduction	46		
	2.2 Copper Compounds	46		
	2.3 Silver Compounds	48		
	2.4 Gold Compounds	50		
	References	53		
Chapter 3	Group 2 (Be–Ba) and Group 12 (Zn–Hg) By Christopher M. Pask and Dominic S. Wright	61		
	1 Scope and Organisation of the Review	61		
	2 Group 2	61		

Organometallic Chemistry, Volume 32 © The Royal Society of Chemistry, 2005

viii	Content

	3 Group 12 References	66 71
Chapter 4	Scandium, Yttrium and the Lanthanides By John G. Brennan and Andrea Sella	75
	 Introduction New Compounds – Structure and Reactivity Cyclopentadienyl (Cp) and Lightly Substituted Cp Compounds 	75 75 75
	2.2 Cp* and Related Per-substituted Ancillaries	77
	2.3 Functionalized Cp Ligands	80
	2.4 Linked and Ansa-Cp Ligands	81
	2.5 Indenyl and Fluorenyl Ancillaries	82
	2.6 Hetrocyclic Ancillaries	83
	2.7 Amido and other Nitrogen-based Supports	86
	2.8 Carborane and other Boron-containing Ligands	88
	2.9 Aluminates	90
	2.10 Other Ancillaries	91 92
	3 Theoretical Studies	92 95
	4 Gas Phase Chemistry5 Polymerization Catalysis	95
	5.1 Olefin Polymerization	95
	5.2 Butadiene	96
	5.3 Acrylates	96
	5.4 Polar Monomers	97
	6 Applications in Organic Synthesis	97
	References	98
Chapter 5	Carboranes, Including Their Metal Complexes By Paul A. Jelliss	104
	1 Introduction	104
	2 Theoretical and Computational Studies	105
	3 Carboranes	105
	$3.1 \{CB_8\} \text{ and } \{CB_9\}$	105
	$3.2 \{CB_{10}\}$	105
	$3.3 \{CB_{11}\}$	105
	$3.4 \{C_2B_3\}$	106
	3.5 $\{C_2B_7\}$	106
	$3.6 \{C_2B_N\}$	106
	$3.7 \{C_2B_9\}$	107
	3.8 $\{C_2B_{10}\}$	108
	$3.9 \{C_3B_3\} \text{ and } \{CB_4B_2\}$	110
	4 Metallacarbaboranes	110
	$4.1 \{MCB_{10}\}$	110

Contents

		4.2	$\{exo\text{-MCB}_{11}\}$	111
		4.3	$\{MC_2B_4\}$	111
		4.4	$\{MC_2B_8\}$	112
		4.5	$\{MC_2B_9\}$	112
		4.6	$\{\mathbf{MC}_2\mathbf{B}_{10}\}$	113
		4.7	$\{exo-MC_2B_{10}\}$	114
	5	Biole	ogical Carborane Chemistry and BNCT	115
	6		stal Engineered Supramolecular and Polymeric	
			talla)carborane Materials	117
		Refe	rences	119
Chapter 6	Gr	oup I	II: B, Al, Ga, In and Tl	124
	By	Simo	on Aldridge	
	1	Gene	eral	124
	2	Boro	on	124
		2.1	$B(C_6F_5)_3$ and Related Boranes	124
		2.2	Borate Anions	129
		2.3	Boron Hydrides	130
		2.4	Boratabenzenes and Related Systems	131
		2.5	Boron-containing Materials	133
		2.6	Boron-based Sensors	133
		2.7	Boron-based Ligand Systems	134
		2.8	Boronic Acids and Suzuki Type Coupling Reactions	137
		2.9	Diboron(4) Reagents	139
		2.10	Borane Functionalized Cyclopentadienyl Ligands	140
		2.11	Miscellaneous	142
	3	Alun	minium	145
		3.1	Sub-valent Aluminium and Aluminium Clusters	145
		3.2	Aluminoxanes, MAO Models and Aluminium in	
			Olefin Polymerization	146
		3.3	Aluminium Derivatives Containing Bonds to Group	
			15 Elements	147
		3.4	Aluminium Derivatives Containing Bonds to Group	
			16 Elements	151
		3.5	Aluminium Organometallics in Organic Synthesis	153
		3.6	Miscellaneous Examples	154
	4	Gall	ium	155
		4.1	Sub-valent Gallium and Gallium Clusters	155
		4.2	Complexes Containing Subvalent Gallium Species as	
			Ligands	157
		4.3	Gallium Derivatives Containing Bonds to Group	
			15 Elements	158
		4.4	Gallium Derivatives Containing Bonds to Group	
			16 Elements	159
		4.5	Gallium Hydrides	160

X		Contents

•

	4.6 Miscellaneous	161
	5 Indium	161
	5.1 Sub-valent Indium and Indium Clusters	161
	5.2 Indium Derivatives Containing Bonds to Groups	1.63
	15 or 16	163
	5.3 Indium Organometallics in Organic Synthesis	163
	5.4 Miscellaneous Examples	163
	6 Thallium	163
	References	164
Chapter 7	Group 14: Silicon, Germanium, Tin and Lead By Richard A. Layfield	171
	1 Overview	171
	2 Silylenes	171
	3 Germylenes, Stannylenes and Plumbylenes	173
	4 Multiple Bonds to Main Group Elements	175
	5 Homoaromatics and Related Compounds	179
	6 π-Bonded Compounds	182
	7 Transition and Main Group Metal Complexes	182
	References	184
Chapter 8	Group 15: Phosphorus, Arsenic, Antimony and Bismuth <i>By Matthew D. Francis</i>	188
	1 Phosphorus	188
	2 Arsenic	199
	3 Antimony	204
	4 Bismuth	207
	References	210
Chapter 9	Organo-Transition Metal Cluster Complexes	214
	By Mark G. Humphrey and Marie P. Cifuentes	
	1 Introduction	214
	2 General Reviews	214
	3 Spectroscopic Studies	214
	4 Theory	215
	5 Structural Studies	216
	6 Large Clusters	216
	6.1 Homonuclear High-nuclearity Clusters	216
	6.2 Heteronuclear High-nuclearity Clusters	218
	7 Group 6	219
	8 Group 7	221
	8.1 Rhenium	221

Contents

	9	Group 8	223
		9.1 Iron	223
		9.2 Ruthenium	224
		9.3 Osmium	232
		9.4 Mixed-metal Clusters Containing Onl	y Group 8
		Metals	239
	10	Group 9	239
		10.1 Cobalt	239
		10.2 Rhodium	240
		10.3 Iridium	241
		10.4 Group 9 Mixed Metal Clusters	241
		10.5 Group 9 Clusters as Catalysts	242
	11	Group 10	242
		11.1 Nickel	242
		11.2 Palladium	242
		11.3 Platinum	243
	12	Group 11	244
		12.1 Copper	244
		12.2 Silver	245
		12.3 Gold	245
	13	Group 12	246
		13.1 Mercury	246
	14	Mixed Metal Clusters	246
		14.1 Group 5	246
		14.2 Group 6	247
		14.3 Group 7	248
		14.4 Group 8	250
		14.5 Group 9	254
		14.6 Group 10	254
		14.7 Group 11	255
	. .	14.8 Clusters Containing Three Different	
	Ref	erences	257
Chamtan 10	C.	ampleyes Containing Metal. Conhon a Bondo	of Cuonna Inon
Chapter 10		omplexes Containing Metal–Carbon σ-Bonds obalt and Nickel, Including Carbenes and Car	-
		Philip J. King	bynes 204
	Δ,	1 map of 12mg	
	1	Introduction	264
	2	Reviews and Articles of General Interest	264
	3	Metal-Carbon σ-Bonds Involving Group 8	
		Metals	265
		3.1 The Iron Triad	265
		3.2 The Cobalt Triad	279
		3.3 The Nickel Triad	284
	4	Carbene and Carbyne Complexes of Group	
	Re	ferences	297

xii Contents

Chapter 11	F			
	Alkynes and Dienes	314		
	By Gregory A. Solan			
	1 Introduction	314		
	2 Reviews	314		
	3 Complexes Containing π -Coordinated Alkenes	315		
	3.1 Well-defined π -Coordinated Alkenes	315		
	3.2 π-Coordinated Alkenes Generated In-situ	324		
	4 Complexes Containing π-Coordinated Alkynes	327		
	4.1 Well-defined π-Coordinated Alkynes	327		
	4.2 π-Coordinated Alkynes Generated In-situ	327		
	5 Complexes Containing π-Coordinated Dienes (Chain and			
	Cyclic)	342		
	5.1 Well-defined π-Coordinated Conjugated Dienes	342		
	5.2 Well-defined π-Coordinated Non-conjugated			
	Dienes	347		
	5.3 π-Coordinated Dienes Generated In-situ	351		
	6 Bimetallic Complexes Containing π-Coordinated Alkene Alkynes or Dienes			
	6.1 Homobimetallic	351		
	6.2 Heterobimetallic	351 358		
	References	360		
	References	300		
Chapter 12	Transition Metal Complexes of Cyclopentadienyl Ligands	375		
	By Ian R. Butler			
	1 General Introduction	375		
	2 Main Group, Lanthanides and Actinides	375		
	3 Titanium, Zirconium and Hafnium	379		
	4 Vanadium, Niobium and Tantalum	387		
	5 Chromium, Molybdenum and Tungsten	389		
	6 Manganese, Rhenium and Technetium	394		
	7 Iron, Ruthenium and Osmium	395		
	7.1 General Ferrocene and Synthetic Chemistry	395		
	7.2 Electrochemistry	416		
	7.3 Polymer Chemistry	419		
	7.4 Schiff Bases Ligand/Complexes 7.5 NMR	421		
	7.5 NMR7.6 Materials Chemistry	422		
	7.0 Materials Chemistry 7.7 Liquid Crystals	422		
	7.7 Equid Crystats 7.8 Complexes/Coordination	424 424		
	7.9 Carbon-based Structures	424		
	7.10 Dppf as a Ligand	426		
	7.11 Theoretical	431		
	7.12 Miscellaneous Ferrocene Chemistry	431		
		マンコ		

Contents		xiii
	8 Cobalt	438
	9 Nickel	440
	References	440
Chapter 13	Organic Aspects of Organometallic Chemistry By Steven D. R. Christie and Jon J. Shotton	454
	•	
	1 Introduction	454
	2 Methods for C–C Bond Formation	454
	3 Methods for C–X Bond Formation	461
	4 Metathesis Reactions	464
	5 Metal Mediated Cyclisation and Cycloisomerisatio	n
	Reactions	467
	6 Metal Mediated Cycloadditions	471
	7 Pauson-Khand Type Reactions	476
	8 Nicholas Reactions	479
	References	481

Theoretical Organometallic Chemistry

BY A.J. BRIDGEMAN

1 Introduction

This chapter aims to cover theoretical and computational studies on organometallic molecules. Section 1 covers the s and p-block elements and Section 2 covers the d- and f-block metals. Clusters, carbonyls and metal-metal bonded systems containing M-C bonds are included. Extended systems and organic species on metal surfaces are excluded except where calculations have been performed on model complexes designed to mimic solid state and surface chemistry.

A wide variety of computational methods is employed in the computational chemistry community. As in previous recent years, density functional theory (DFT) continues to grow in prominence. The vast majority of the work described in this chapter has been performed at the DFT level with the hybrid functional B3LYP being the most popular for studies of organometallic molecules and reactions. 'Traditional' ab initio approaches including Hartree-Fock (HF) and post-HF methods (including MP2 and MP4) continue to be used, often for comparison with DFT based methods. Semi-empirical methods now appear to have only limited use except in the molecular mechanics (MM) calculations. A relatively new use of molecular mechanics for large systems is in hybrid calculations where the transition metal and its coordination environment or the reactive centre of a molecule are treated at a higher level leaving the remainder to be treated at the MM level. These QM/MM or ONIOM calculations enable the steric bulk of organometallic molecules to be adequately but computationally efficiently treated and are becoming particularly prevalent in studies of reaction mechanisms and profiles.

Only a brief mention of the computational method is given. Standard abbreviations for computational methods are employed throughout. Given the plethora of basis sets available in modern computational chemistry programs and the variety of basis set designations employed by authors in this field, no description of basis sets is given. The reader should consult the original work for further details of the computational method and the basis set.