GIAN-CARLO ROTA, Editor ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Volume 5

Section: Statistical Mechanics Giovanni Gallavotti, Section Editor

Thermodynamic Formalism
The Mathematical Structures of
Classical Equilibrium
Statistical Mechanics

David Ruelle

GIAN-CARLO ROTA, Editor

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Volume 5

Section: Statistical Mechanics Giovanni Gallavotti, Section Editor

Thermodynamic Formalism

The Mathematical Structures of Classical Equilibrium Statistical Mechanics

David Ruelle

Institut des Hautes Etudes Scientifiques

With a Foreword by Giovanni Gallavotti Università di Roma

Addison-Wesley Publishing Company
Advanced Book Program
Reading, Massachusetts

London · Amsterdam · Don Mills, Ontario · Sydney · Tokyo

Library of Congress Cataloging in Publication Data

Ruelle, David. Thermodynamic formalism.

(Encyclopedia of mathematics and its applications ; v. 5 : Section, Statistical mechanics) Bibliography: p.

Includes index.

1. Statistical mechanics. I. Title.

II. Title: Equilibrium statistical mechanics.

III. Series.

OC174.86.C6R83 ISBN 0-201-13504-3

530.1'32 78-6756

American Mathematical Society (MOS) Subject Classification Scheme (1970): 82-02, 82A05, 28A65, 54H20, 58F15, 58F20

Copyright © 1978 by Addison-Wesley Publishing Company, Inc. Published simultaneously in Canada.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Addison-Wesley Publishing Company, Inc., Advanced Book Program, Reading, Massachusetts 01867, U.S.A.

Printed in the United States of America ABCDEFGHIJK-HA-798

Editor's Statement

A large body of mathematics consists of facts that can be presented and described much like any other natural phenomenon. These facts, at times explicitly brought out as theorems, at other times concealed within a proof, make up most of the applications of mathematics, and are the most likely

to survive changes of style and of interest.

This ENCYCLOPEDIA will attempt to present the factual body of all mathematics. Clarity of exposition, accessibility to the non-specialist, and a thorough bibliography are required of each author. Volumes will appear in no particular order, but will be organized into sections, each one comprising a recognizable branch of present-day mathematics. Numbers of volumes and sections will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely used where it is needed, and more accessible in fields in which it can be applied but where it has not yet penetrated because of insufficient information.

GIAN-CARLO ROTA

Section Editor's Foreword

Thermodynamics is still, as it always was, at the center of physics, the standard-bearer of successful science. As happens with many a theory, rich in applications, its foundations have been murky from the start and have provided a traditional challenge on which physicists and mathematicians alike have tested their latest skills.

Ruelle's book is perhaps the first entirely rigorous account of the foundations of thermodynamics. It makes heavier demands on the reader's mathematical background than any volume published so far. It is hoped that ancillary volumes in time will be published which will ease the ascent onto this beautiful and deep theory; at present, much of the background material can be gleaned from standard texts in mathematical analysis. In any case, the timeliness of the content shall be ample reward for the austerity of the text.

GIOVANNI GALLAVOTTI

General Editor, Section on Statistical Mechanics
and
GIAN-CARLO ROTA

Preface

The present monograph is based on lectures given in the mathematics departments of Berkeley (1973) and of Orsay (1974–75). My aim has been to describe the mathematical structures underlying the thermodynamic formalism of equilibrium statistical mechanics, in the simplest case of classical lattice spin systems.

The thermodynamic formalism has its origins in physics, but it has now invaded topological dynamics and differentiable dynamical systems, with applications to questions as diverse as the study of invariant measures for an Anosov diffeomorphism (Sinai [3]), or the meromorphy of Selberg's zeta function (Ruelle [7]). The present text is an introduction to such questions, as well as to more traditional problems of statistical mechanics, like that of phase transitions. I have developed the general theory—which has considerable unity—in some detail. I have however left aside particular techniques (like that of correlation inequalities) which are important in discussing examples of phase transitions, but should be the object of a special study.

Statistical mechanics extends to systems vastly more general than the classical lattice spin systems discussed here (in particular to quantum systems). One can therefore predict that the theory discussed in this monograph will extend to vastly more general mathematical setups (in particular to non-commutative situations). I hope that the present text may contribute some inspiration to the construction of the more general theories, as well as clarifying the conceptual structure of the existing formalism.

analonament and beautiful physicists and mathematicans

Contents

Editor's Statem	ent	. X
	Foreword	
Preface	3.2. The Punction A	, xix
Chanter 0	3.3. Partition hancbons.	
Chapter U.	Introduction	1
	Generalities	
	Description of the Thermodynamic Formalism	
0.3.	Summary of Contents	9
Chapter 1.		
1.1.	Configuration Space	. 11
1.2.	Interactions	. 12
1.3.	Gibbs Ensembles and Thermodynamic Limit.	13
1.4.	Proposition	1/
1.5.	Gibbs States.	. 14
1.6.	Gibbs States	. 15
1.7.	Boundary Terms.	16
1.8.	Theorem	. 18
1.9.	Theorem	. 18
1.10.	Algebra at Infinity	. 19
1.11.	Theorem (Characterization of Pure Gibbs States)	. 20
1.12.	The Operators \mathfrak{M}_{λ}	. 21
1.13.	Theorem (Characterization of Unique Gibbs States).	. 21
1.14.		
enuintille.	Notes	.23
	Remark. Notes. Exercises.	.23
Chapter 2.	Gibbs States: Complements.	
	4.3. Physical Interpretation	. 20
2.1.	Morphisms of Lattice Systems	25
2.2.	Example	. 26
2.3.	The Interaction $F^*\Phi$. 26
2.4.	Lemma	.27
2.5.	Proposition	

. 2.6.	Remarks	28
2.7.	Systems of Conditional Probabilities	20
2.8.	Properties of Gibbs States	30
2.9.	Remark	31
	Notes	
	Exercises	
Chapter 3.	Translation Invariance. Theory of Equilibrium States	35
3.1.	Translation Invariance	
3.2.	The Function A_{Φ}	
3.3.	Partition Functions	
3.4.	Theorem	38
3.5.	Invariant States	
3.6.	Proposition	42
3.7.	Theorem	42
3.8.	Entropy	44
3.9.	Infinite Limit in the Sense of van Hove	
3.10.	Theorem	46
3.11.	Lemma	
3.12.	Theorem	48
3.13.	Corollary	.50
3.14.	Corollary	.51
3.15.	Physical Interpretation	
3.16.	Theorem	
3.17.	Corollary	.52
3.18.	Approximation of Invariant States by Equilibrium States	52
3.19.	Lemma	53
3.20.	Theorem	54
3.21.	Coexistence of Phases	55
3.21.	Notes	
	Francisco	57
	dyneral bill	
Chapter 4.		50
	States	
4.1.	Generalities	59
4.2.	Theorem.	. 60
4.3.	Physical Interpretation	. 61
4.4.	Proposition	
4.5.		62
4.6.	Strict Convexity of the Pressure	. 63
4.7.		63
4.8.	Z'-Lattice Systems and Z'-Morphisms	. 64

Contents xi

4.9.	Proposition	. 64
411	Remark	0.
4 12	Remark. Proposition. Restriction of \mathbf{Z}^{ν} to a Subgroup G .	. 66
4 13	Restriction of 7" to a Subgroup G	. 66
001 414	Proposition	00
115	Proposition. Undecidability and Non-periodicity. Notes.	. 60
	Notes	. 60
	Exercises	00
	67 - Other Definitions of the Pressure.	05
Chapter 5.	One-Dimensional Systems	71
5.1.	Lemma	70
5.2.	Theorem	/2
5.3.	Theorem (Signary Languages V) (1970-1971)	/3
5.4.	Lamma	/3
5.5.	Theorem. Theorem. Lemma. Proof of Theorems 5.2 and 5.3	14
5.6.	Proof of Theorems 5.2 and 5.3	/3
5.7.	Theorem	/8
5.8.	Mixing 7 Latting Systems	/8
5.9.	Theorem. Mixing Z-Lattice Systems. Lemma. Theorem. The Transfer Matrix and the Operator £.	. 80
5.10.	Theorem	80
5.11.	The Transfer Matrix and the Operator 0	82
5.12.	The Function d	82
5.13.	The Function $\psi_{>}$	83
5.14.	The Operator S	. 84
5.15.	Lemma	84
5.16.	Lemma.	85
5.17.	Proposition	. 85
5.18.	Remark	. 86
5.19.	The Space of θ and Deleted Spaces	80
5.20.	The Space \mathcal{F}^{θ} and Related Spaces	. 87
5.21.	Theorem	. 87
5.22.	Theorem. Remarks. Lemma. Proposition.	88
5.23.	Lemma dollaroniosof lattore 2 desm?	89
5.24.	Proposition	89
5.25.	Remark	. 90
5.26.	Remark. Mayord and Adoption of the Corollary and Adoption bases are and an another the Corollary and Adoption bases are and an another the Corollary and Adoption bases are and an another the Corollary and Adoption bases are an another the Corollary and Adoption bases ar	. 91
5.27.	Corollary, came and English um States, vicinities	91
5.28.	Zeta Functions	92
5.29.	Theorem	. 92
5.30.	Theorem. Visiting Of Vicinity Remark. Shame State Stat	93
5.50.	Notes tislono CLT	. 95
	Exercises	95
		70

6.1. Generalities. 105 6.2. Expansiveness. 106 6.3. Covers 106 6.4. Entropy 107 6.5. Proposition 107 6.6. Pressure 108 6.7. Other Definitions of the Pressure 109 6.8. Properties of the Pressure 111 6.9. The Action τ ^a 111 6.10. Lemma 112 6.11. Lemma 112 6.12. Theorem (Variational Principle) 113 6.13. Equilibrium States 115 6.14. Theorem (Variational Principle) 113 6.15. Remark 116 6.16. Commuting Continuous Maps 117 6.17. Extension to a Z*-Action 117 6.18. Results for Z* _p -Actions 118 6.19. Remark 119 6.20. Topological Entropy 119 6.21. Relative Pressure 120 6.22. Theorem 121 6.23. Corollary 121 Notes 122 Exercises 122 Chapter 7. Statistical Mechanics on Smale Spaces 127 7.4. Smale's "Spectral Decomposition" 129 7.5. Markov Partitions and Symbolic Dynamics 129 7.6. Theorem 130 7.7. Hölder Continuous Functions 131 7.8. Pressure and Equilibrium States 131 7.9. Theorem 132 7.10. Corollary 133 7.11. Remark 133 7.12. Corollary 133 7.13. Corollary 133 7.14. Equilibrium States for A Not Hölder Continuous 133 7.14. Equilibrium States for A Not Hölder Continuous 133 7.14. Equilibrium States for A Not Hölder Continuous 133 7.14. Equilibrium States for A Not Hölder Continuous 133	Chapter 6.	Extension of the Thermodynamic Formalism	
6.3. Covers. 1007 6.5. Proposition 107 6.6. Pressure 108 6.7. Other Definitions of the Pressure 109 6.8. Properties of the Pressure 111 6.9. The Action τ ^a 111 6.10. Lemma 112 6.11. Lemma 112 6.12. Theorem (Variational Principle) 113 6.13. Equilibrium States 115 6.14. Theorem 115 6.15. Remark 116 6.16. Commuting Continuous Maps 117 6.17. Extension to a Z'-Action 117 6.18. Results for Z' -Action 117 6.20. Topological Entropy 119 6.21. Relative Pressure 120 6.22. Theorem 121 6.23. Corollary 121 Notes 122 Exercises 122 Chapter 7. Statistical Mechanics on Smale Spaces 125 7.1. Smale Spaces 125 7.2. Example 127 7.3. Properties of Smale Spaces 127 7.4. Smale's "Spectral Decomposition" 129 7.5. Markov Partitions and Symbolic Dynamics 129 7.6. Theorem 130 7.7. Hölder Continuous Functions 130 7.8. Pressure and Equilibrium States 131 7.9. Theorem 132 7.10. Corollary 132 7.11. Remark 133 7.12. Corollary 133 7.13. Corollary 133 7.14. Remark 133 7.15. Corollary 133 7.16. Corollary 133 7.17 7.17 7.18. Remark 133 7.19 7.11. Remark 133 7.11. Remark 133 7.12. Corollary 133 7.13. Corollary 134 7.14. Corollary 134 7.15. Corollary 134 7.16. Corollary 134 7.17 7.18. Corollary 134 7.19 7.11. Corollary 134 7.11. Corollary 134 7.12. Corollary 134 7.13. Corollary 134	61	Generalities Atama H.A.	105
6.3. Covers. 1007 6.5. Proposition 107 6.6. Pressure 108 6.7. Other Definitions of the Pressure 109 6.8. Properties of the Pressure 111 6.9. The Action τ ^a 111 6.10. Lemma 112 6.11. Lemma 112 6.12. Theorem (Variational Principle) 113 6.13. Equilibrium States 115 6.14. Theorem 115 6.15. Remark 116 6.16. Commuting Continuous Maps 117 6.17. Extension to a Z'-Action 117 6.18. Results for Z' -Action 117 6.20. Topological Entropy 119 6.21. Relative Pressure 120 6.22. Theorem 121 6.23. Corollary 121 Notes 122 Exercises 122 Chapter 7. Statistical Mechanics on Smale Spaces 125 7.1. Smale Spaces 125 7.2. Example 127 7.3. Properties of Smale Spaces 127 7.4. Smale's "Spectral Decomposition" 129 7.5. Markov Partitions and Symbolic Dynamics 129 7.6. Theorem 130 7.7. Hölder Continuous Functions 130 7.8. Pressure and Equilibrium States 131 7.9. Theorem 132 7.10. Corollary 132 7.11. Remark 133 7.12. Corollary 133 7.13. Corollary 133 7.14. Remark 133 7.15. Corollary 133 7.16. Corollary 133 7.17 7.17 7.18. Remark 133 7.19 7.11. Remark 133 7.11. Remark 133 7.12. Corollary 133 7.13. Corollary 134 7.14. Corollary 134 7.15. Corollary 134 7.16. Corollary 134 7.17 7.18. Corollary 134 7.19 7.11. Corollary 134 7.11. Corollary 134 7.12. Corollary 134 7.13. Corollary 134	00	Fxpansiveness	106
6.4. Entropy. 6.5. Proposition. 6.6. Pressure. 6.7. Other Definitions of the Pressure. 6.8. Properties of the Pressure. 6.9. The Action τ ^a . 6.11. Lemma. 6.12. Theorem (Variational Principle). 6.13. Equilibrium States. 6.14. Theorem. 6.15. Remark. 6.16. Commuting Continuous Maps. 6.17. Extension to a Z'-Action. 6.18. Results for Z' _y -Actions. 6.19. Remark. 6.19. Remark. 6.19. Remark. 6.20. Topological Entropy. 6.21. Relative Pressure. 6.22. Theorem. 6.23. Corollary. Notes. Exercises. 6.24. Smale's "Spectral Decomposition". 7.5. Markov Partitions and Symbolic Dynamics. 7.6. Theorem. 7.7. Hölder Continuous Functions. 7.8. Pressure and Equilibrium States. 132 7.1. Remark. 7.10. Corollary. 7.11. Remark. 7.12. Corollary. 7.13. Theorem. 7.14. Remark. 7.15. Theorem. 7.16. Theorem. 7.17. Hölder Continuous Functions. 7.18. Pressure and Equilibrium States. 132 7.19. Theorem. 132 7.10. Corollary. 133 7.11. Remark. 134 7.12. Corollary. 135 7.13. Corollary. 136 7.14. Remark. 137 7.15. Corollary. 137 7.11. Remark. 137 7.11. Remark. 138 7.12. Corollary. 139 7.11. Remark. 130 7.11. Remark. 131 7.12. Corollary. 131 7.13. Corollary. 132 7.14. Remark. 133 7.15. Corollary. 134 7.16. Corollary. 136 7.17. Theorem. 137 7.18. Corollary. 138 7.19. Corollary. 139 7.11. Remark. 130 7.11. Remark. 131 7.12. Corollary. 131 7.13. Corollary. 132 7.13. Corollary. 134	Charles of Black	Covers	-106
6.5. Proposition. 108 6.6. Pressure. 108 6.7. Other Definitions of the Pressure. 109 6.8. Properties of the Pressure. 111 6.9. The Action τ ^a . 111 6.10. Lemma. 112 6.11. Lemma. 112 6.12. Theorem (Variational Principle). 113 6.13. Equilibrium States. 115 6.14. Theorem. 115 6.15. Remark. 116 6.16. Commuting Continuous Maps. 117 6.17. Extension to a Z ^p -Action. 117 6.18. Results for Z ^p _j -Actions. 118 6.19. Remark. 119 6.20. Topological Entropy. 119 6.21. Relative Pressure. 120 6.22. Theorem. 121 6.23. Corollary. 121 Notes. 122 Exercises. 122 Chapter 7. Statistical Mechanics on Smale Spaces. 125 7.1. Smale Spaces. 125 7.4. Smale's "Spectral Decomposition" 125 7.5. Markov Partitions and Symbolic Dynamics. 125 7.6. Theorem. 136 7.7. Hölder Continuous Functions. 136 7.8. Pressure and Equilibrium States. 131 7.9. Theorem. 137 7.10. Corollary. 137 7.11. Remark. 133 7.12. Corollary. 133 7.13. Corollary. 133 7.11. Remark. 133 7.11. Remark. 133 7.12. Corollary. 133 7.13. Corollary. 133 7.11. Remark. 133 7.11. Remark. 133 7.11. Remark. 133 7.12. Corollary. 133 7.13. Corollary. 133 7.11. Remark. 133 7.11. Remark. 133 7.12. Corollary. 133 7.13. Corollary. 133	10 11 11 11	Entropy	.107
6.6. Pressure 6.7. Other Definitions of the Pressure 6.8. Properties of the Pressure 6.8. Properties of the Pressure 6.9. The Action τ ^a 111 6.10. Lemma 6.11. Lemma 6.12. Theorem (Variational Principle) 6.13. Equilibrium States 6.14. Theorem 6.15. Remark 6.16. Commuting Continuous Maps 6.17. Extension to a Z ^p -Action 6.18. Results for Z ^p -Actions 6.19. Remark 6.20. Topological Entropy 6.21. Relative Pressure 6.22. Theorem 6.23. Corollary Notes Exercises 7.1. Smale Spaces 7.2. Example 7.3. Properties of Smale Spaces 7.4. Smale's "Spectral Decomposition" 7.5. Markov Partitions and Symbolic Dynamics 7.6. Theorem 7.7. Hölder Continuous Functions 7.8. Pressure and Equilibrium States 7.9. Theorem 7.10. Corollary 7.11. Remark 7.12. Corollary 7.13. Pressure and Equilibrium States 7.14. Remark 7.15. Corollary 7.16. Remark 7.17. Remark 7.18. Pressure and Equilibrium States 7.19. Theorem 7.10. Corollary 7.11. Remark 7.12. Corollary 7.13. Corollary 7.13. Corollary 7.11. Remark 7.12. Corollary 7.13. Corollary 7.13. Corollary 7.11. Remark 7.12. Corollary 7.13. Corollary	00.	Proposition	. 107
6.8. Properties of the Pressure. 111 6.9. The Action τ ^a 111 6.10. Lemma 112 6.11. Lemma 112 6.12. Theorem (Variational Principle) 113 6.13. Equilibrium States 115 6.14. Theorem 115 6.15. Remark 116 6.16. Commuting Continuous Maps 117 6.17. Extension to a Z*-Action 117 6.18. Results for Z*-Action 117 6.19. Remark 119 6.20. Topological Entropy 119 6.21. Relative Pressure 120 6.22. Theorem 121 6.23. Corollary 121 Notes 122 Exercises 122 Chapter 7. Statistical Mechanics on Smale Spaces 125 7.1. Smale Spaces 125 7.3. Properties of Smale Spaces 127 7.4. Smale's "Spectral Decomposition" 129 7.5. Markov Partitions and Symbolic Dynamics 129 7.6. Theorem 130 7.7. Hölder Continuous Functions 131 7.9. Theorem 132 7.10. Corollary 133 7.11. Remark 133 7.12. Corollary 134 7.13. Corollary 134 7.11. Remark 133 7.12. Corollary 134 7.13. Corollary 134 7.13. Corollary 134 7.13. Corollary 134 7.11. Remark 135 7.11. Remark 136 7.12. Corollary 136 7.13. Corollary 136 7.13. Corollary 136 7.14. Remark 137 7.15. Corollary 136 7.16. Theorem 136 7.17. Remark 136 7.18. Corollary 136 7.19. Theorem 137 7.11. Remark 137 7.12. Corollary 137 7.13. Corollary 136	012: 1 3 3 3 4	Pressure	.108
6.8. Properties of the Pressure. 111 6.9. The Action $τ^a$. 111 6.10. Lemma. 112 6.11. Lemma. 112 6.12. Theorem (Variational Principle). 113 6.13. Equilibrium States. 115 6.14. Theorem. 115 6.15. Remark. 116 6.16. Commuting Continuous Maps. 117 6.17. Extension to a Z^p -Action. 117 6.18. Results for Z^p -Actions. 118 6.19. Remark. 119 6.20. Topological Entropy. 119 6.21. Relative Pressure. 120 6.22. Theorem. 121 6.23. Corollary. 121 Notes. 122 Exercises. 122 7.1. Smale Spaces. 125 7.2. Example. 127 7.3. Properties of Smale Spaces. 127 7.4. Smale's "Spectral Decomposition" 129 7.5. Markov Partitions and Symbolic Dynamics. 126 7.6. Theorem. 130 7.7. Hölder Continuous Functions. 131 7.9. Theorem. 132 7.10. Corollary. <t< th=""><th></th><th>Other Definitions of the Pressure</th><th>109</th></t<>		Other Definitions of the Pressure	109
6.9. The Action τ**.	(0	Properties of the Pressure	.111
6.10. Lemma	J. L. L. B. W. C. C.	The Action τ^a	111
6.11. Lemma 6.12. Theorem (Variational Principle) 6.13. Equilibrium States 6.14. Theorem 6.15. Remark 6.16. Commuting Continuous Maps 6.17. Extension to a Z'-Action 6.18. Results for Z'_>-Actions 6.19. Remark 6.20. Topological Entropy 6.21. Relative Pressure 6.22. Theorem 6.23. Corollary Notes Exercises 7.1. Smale Spaces 7.2. Example 7.3. Properties of Smale Spaces 7.4. Smale's "Spectral Decomposition" 7.5. Markov Partitions and Symbolic Dynamics 7.6. Theorem 7.7. Hölder Continuous Functions 7.8. Pressure and Equilibrium States 7.10. Corollary 7.11. Remark 7.12. Corollary 7.13. Corollary 7.14. Remark 7.15. Corollary 7.16. Remark 7.17. Remark 7.18. Pressure and Equilibrium States 7.19. Theorem 7.10. Corollary 7.11. Remark 7.11. Remark 7.12. Corollary 7.13. Corollary 7.14. Remark 7.15. Corollary 7.16. Corollary 7.17. Remark 7.18. Corollary 7.19. Corollary 7.19. Corollary 7.11. Remark 7.12. Corollary 7.13. Corollary 7.14. Corollary 7.15. Corollary 7.16. Corollary 7.17. Corollary 7.17. Corollary 7.18. Corollary 7.19. Corollary 7.19. Corollary 7.11. Corollary 7.11. Corollary 7.12. Corollary 7.13. Corollary 7.14. Corollary 7.15. Corollary 7.16. Corollary 7.17. Corollary 7.18. Corollary 7.19. Corollary 7.11. Corollary 7.11. Corollary 7.12. Corollary 7.13. Corollary 7.14. Corollary 7.15. Corollary 7.16. Corollary 7.17. Corollary 7.18. Corollary 7.19. Corollary 7.19. Corollary 7.10. Corollary 7.11. Corollary 7.12. Corollary 7.13. Corollary 7.14. Corollary 7.15. Corollary 7.16. Corollary 7.17. Corollary 7.18. Corollary 7.19. Corollary 7.19. Corollary 7.10. Corollary 7.11. Corollary 7.12. Corollary 7.13. Corollary 7.14. Corollary 7.15. Corollary 7.16. Corollary 7.17. Corollary 7.18. Corollary 7.19. Corollary 7.19. Corollary 7.10. Corollary 7.11. Corollary	(10	Lemma	. 112
6.12. Theorem (Variational Principle). 115 6.13. Equilibrium States. 115 6.14. Theorem. 115 6.15. Remark. 116 6.16. Commuting Continuous Maps. 117 6.17. Extension to a Z *-Action. 117 6.18. Results for Z *Actions. 118 6.19. Remark. 119 6.20. Topological Entropy. 119 6.21. Relative Pressure. 120 6.22. Theorem. 121 6.23. Corollary. 121 Notes. 122 Exercises. 122 Chapter 7. Statistical Mechanics on Smale Spaces. 125 7.1. Smale Spaces. 125 7.2. Example. 127 7.3. Properties of Smale Spaces. 127 7.5. Markov Partitions and Symbolic Dynamics. 125 7.6. Theorem. 136 7.7. Hölder Continuous Functions. 136 7.8. Pressure and Equilibrium States. 137 7.9. Theorem. 137 7.10. Corollary. 137 7.11. Remark. 137 7.12. Corollary. 137 7.13. Corollary. 137 7.14. Remark. 137 7.15. Corollary. 137 7.16. Corollary. 137 7.17 7.18. Remark. 137 7.19. Corollary. 137 7.11. Remark. 137 7.12. Corollary. 137 7.13. Corollary. 137 7.14. Corollary. 137 7.15. Corollary. 137 7.16. Corollary. 137 7.17 7.18. Corollary. 137 7.19. Corollary. 137 7.11. Remark. 137 7.12. Corollary. 137 7.13. Corollary. 137 7.14. Corollary. 137 7.15. Corollary. 137 7.16. Corollary. 137 7.17 7.18. Corollary. 137 7.19. Corollary. 137 7.11. Corollary. 137		Lemma	. 112
6.13. Equilibrium States	Service of the service of	Theorem (variational Principle)	. 113
6.14. Theorem. 6.15. Remark. 6.16. Commuting Continuous Maps. 6.17. Extension to a Z '-Action. 6.18. Results for Z ''-Actions. 6.19. Remark. 6.20. Topological Entropy. 6.21. Relative Pressure. 6.22. Theorem. 6.23. Corollary. Notes. Exercises. Chapter 7. Statistical Mechanics on Smale Spaces. 7.1. Smale Spaces. 7.2. Example. 7.3. Properties of Smale Spaces. 7.4. Smale's "Spectral Decomposition". 7.5. Markov Partitions and Symbolic Dynamics. 7.6. Theorem. 7.7. Hölder Continuous Functions. 7.8. Pressure and Equilibrium States. 7.10. Corollary. 7.11. Remark. 7.11. Remark. 7.11. Remark. 7.12. Corollary. 7.13. Corollary. 7.14. Remark. 7.15. Markov. 7.16. Theorem. 7.17. Hölder Continuous Functions. 7.18. Pressure and Equilibrium States. 7.19. Theorem. 7.10. Corollary. 7.11. Remark. 7.11. Remark. 7.12. Corollary. 7.13. Corollary. 7.13. Corollary. 7.14. Remark. 7.15. Markov. 7.16. Theorem. 7.17. Holder Corollary. 7.18. Pressure and Equilibrium States. 7.19. Theorem. 7.10. Corollary. 7.11. Remark. 7.11. Remark. 7.12. Corollary. 7.13. Corollary. 7.13. Corollary. 7.14. Remark. 7.15. Markov. 7.16. Theorem. 7.17. Holder Corollary. 7.18. Pressure and Equilibrium States. 7.19. Theorem. 7.10. Corollary. 7.11. Remark. 7.12. Corollary. 7.13. Corollary. 7.13. Corollary.	(10	Equilibrium States	.113
6.15. Remark		Theorem	. 113
6.16. Commuting Continuous Maps 6.17. Extension to a Z '-Action 6.18. Results for Z '-Actions 6.19. Remark 6.20. Topological Entropy 6.21. Relative Pressure 6.22. Theorem 6.23. Corollary Notes Exercises 122 Chapter 7. Statistical Mechanics on Smale Spaces 7.1. Smale Spaces 7.2. Example 7.3. Properties of Smale Spaces 7.4. Smale's "Spectral Decomposition" 7.5. Markov Partitions and Symbolic Dynamics 7.6. Theorem 7.7. Hölder Continuous Functions 7.8. Pressure and Equilibrium States 7.9. Theorem 7.10. Corollary 7.11. Remark 7.12. Corollary 7.13. Corollary 7.14. Remark 7.15. Corollary 7.16. Theorem 7.17. Remark 7.18. Remark 7.19. Corollary 7.11. Remark 7.11. Remark 7.12. Corollary 7.13. Corollary 7.14. Scorollary 7.15. Markov Partitions 7.16. Theorem 7.17. Theorem 7.18. Pressure and Equilibrium States 7.9. Theorem 7.10. Corollary 7.11. Remark 7.12. Corollary 7.13. Corollary 7.14. Scorollary 7.15. Theorem 7.16. Corollary 7.17. Theorem 7.18. Pressure and Equilibrium States 7.19. Theorem 7.10. Corollary 7.11. Remark 7.12. Corollary 7.13. Corollary 7.13. Corollary	with the second second	Remark	. 110
6.17. Extension to a Z*-Action	Other or other services.	Commuting Continuous Maps	. 11/
6.18. Results for Z's-Actions 6.19. Remark 6.20. Topological Entropy 6.21. Relative Pressure 6.22. Theorem 6.23. Corollary Notes Exercises 122 Exercises 122 Chapter 7. Statistical Mechanics on Smale Spaces 125 7.1. Smale Spaces 7.2. Example 7.3. Properties of Smale Spaces 7.4. Smale's "Spectral Decomposition" 7.5. Markov Partitions and Symbolic Dynamics 7.6. Theorem 7.7. Hölder Continuous Functions 7.8. Pressure and Equilibrium States 7.9. Theorem 130 7.10. Corollary 7.11. Remark 131 7.12. Corollary 132 7.13. Corollary 133 7.14. Corollary 134 7.15. Corollary 135 7.16. Corollary 136 7.17. Holder Corollary 137 7.18. Remark 138 7.19. Corollary 139 7.11. Remark 130 7.11. Remark 131 7.12. Corollary 131 7.13. Corollary 134		Extension to a Z'-Action	. 11/
6.19. Remark 6.20. Topological Entropy. 119 6.21. Relative Pressure. 120 6.22. Theorem. 121 6.23. Corollary. 121 Notes. 122 Exercises. 122 Chapter 7. Statistical Mechanics on Smale Spaces. 125 7.1. Smale Spaces. 125 7.2. Example. 127 7.3. Properties of Smale Spaces. 127 7.4. Smale's "Spectral Decomposition" 129 7.5. Markov Partitions and Symbolic Dynamics. 129 7.6. Theorem. 130 7.7. Hölder Continuous Functions. 130 7.8. Pressure and Equilibrium States. 131 7.9. Theorem. 132 7.10. Corollary. 132 7.11. Remark. 133 7.12. Corollary. 133 7.13. Corollary. 133 7.14. Corollary. 133 7.15. Corollary. 133 7.16. Corollary. 133 7.17. Corollary. 133 7.18. Corollary. 133 7.19. Corollary. 133 7.11. Remark. 133 7.12. Corollary. 133		Results for Z'-Actions	. 110
6.20. Topological Entropy 6.21. Relative Pressure. 120 6.22. Theorem. 121 6.23. Corollary. 122	(10	Remark	. 119
6.21. Relative Pressure		Topological Entropy	119
6.22. Theorem. 121 6.23. Corollary. 121 Notes. 122 Exercises. 122 Chapter 7. Statistical Mechanics on Smale Spaces. 125 7.1. Smale Spaces. 125 7.2. Example. 127 7.3. Properties of Smale Spaces. 127 7.4. Smale's "Spectral Decomposition". 129 7.5. Markov Partitions and Symbolic Dynamics. 129 7.6. Theorem. 130 7.7. Hölder Continuous Functions. 130 7.8. Pressure and Equilibrium States. 131 7.9. Theorem. 132 7.10. Corollary. 133 7.11. Remark. 133 7.12. Corollary. 133 7.13. Corollary. 134		Relative Pressure	120
6.23. Corollary. 121 Notes. 122 Exercises. 122 Chapter 7. Statistical Mechanics on Smale Spaces. 125 7.1. Smale Spaces. 125 7.2. Example. 127 7.3. Properties of Smale Spaces. 127 7.4. Smale's "Spectral Decomposition". 129 7.5. Markov Partitions and Symbolic Dynamics. 129 7.6. Theorem. 130 7.7. Hölder Continuous Functions. 130 7.8. Pressure and Equilibrium States. 131 7.9. Theorem. 132 7.10. Corollary. 132 7.11. Remark. 133 7.12. Corollary. 133 7.13. Corollary. 134		Theorem	. 121
Notes	(00	Corollary	. 121
Exercises 122 Chapter 7. Statistical Mechanics on Smale Spaces 125 7.1. Smale Spaces 125 7.2. Example 127 7.3. Properties of Smale Spaces 127 7.4. Smale's "Spectral Decomposition" 129 7.5. Markov Partitions and Symbolic Dynamics 129 7.6. Theorem 130 7.7. Hölder Continuous Functions 130 7.8. Pressure and Equilibrium States 131 7.9. Theorem 132 7.10. Corollary 132 7.11. Remark 133 7.12. Corollary 133 7.13. Corollary 134		Notes	. 122
7.1. Smale Spaces 125 7.2. Example 127 7.3. Properties of Smale Spaces 127 7.4. Smale's "Spectral Decomposition" 129 7.5. Markov Partitions and Symbolic Dynamics 129 7.6. Theorem 130 7.7. Hölder Continuous Functions 130 7.8. Pressure and Equilibrium States 131 7.9. Theorem 132 7.10. Corollary 132 7.11. Remark 133 7.12. Corollary 133 7.13. Corollary 134		Exercises	. 122
7.1. Smale Spaces. 125 7.2. Example. 127 7.3. Properties of Smale Spaces. 127 7.4. Smale's "Spectral Decomposition". 129 7.5. Markov Partitions and Symbolic Dynamics. 129 7.6. Theorem. 130 7.7. Hölder Continuous Functions. 130 7.8. Pressure and Equilibrium States. 131 7.9. Theorem. 132 7.10. Corollary. 133 7.11. Remark. 133 7.12. Corollary. 133 7.13. Corollary. 134	Chapter 7.	Statistical Mechanics on Smale Spaces	. 125
7.2. Example. 127 7.3. Properties of Smale Spaces. 127 7.4. Smale's "Spectral Decomposition". 129 7.5. Markov Partitions and Symbolic Dynamics. 129 7.6. Theorem. 130 7.7. Hölder Continuous Functions. 130 7.8. Pressure and Equilibrium States. 131 7.9. Theorem. 132 7.10. Corollary. 132 7.11. Remark. 133 7.12. Corollary. 133 7.13. Corollary. 134	71	Smale Spaces	.125
7.3. Properties of Smale Spaces 127 7.4. Smale's "Spectral Decomposition" 129 7.5. Markov Partitions and Symbolic Dynamics 129 7.6. Theorem 130 7.7. Hölder Continuous Functions 131 7.8. Pressure and Equilibrium States 131 7.9. Theorem 132 7.10. Corollary 132 7.11. Remark 133 7.12. Corollary 133 7.13. Corollary 134		Evample	. 127
7.5. Markov Partitions and Symbolic Dynamics. 128 7.6. Theorem. 130 7.7. Hölder Continuous Functions. 130 7.8. Pressure and Equilibrium States. 131 7.9. Theorem. 132 7.10. Corollary. 133 7.11. Remark. 133 7.12. Corollary. 133 7.13. Corollary. 134		Properties of Smale Spaces	. 127
7.5. Markov Partitions and Symbolic Dynamics. 128 7.6. Theorem. 130 7.7. Hölder Continuous Functions. 130 7.8. Pressure and Equilibrium States. 131 7.9. Theorem. 132 7.10. Corollary. 133 7.11. Remark. 133 7.12. Corollary. 133 7.13. Corollary. 134	Service of the service of	Smale's "Spectral Decomposition"	.129
7.6. Theorem		Markov Partitions and Symbolic Dynamics	. 129
7.7. Hölder Continuous Functions	ACT FROM THE	Theorem	. 130
7.8. Pressure and Equilibrium States		Hölder Continuous Functions	. 130
7.9. Theorem		Pressure and Fauilibrium States	. 131
7.10. Corollary	A COLUMN TO SERVICE STATE OF THE SERVICE STATE OF T	Theorem	. 132
7.11. Remark		Corollary	. 132
7.12. Corollary	The same of the same	Remark	. 133
7.13. Corollary		Corollary	. 133
7.14 Fauilibrium States for 4 Not Hölder Continuous 13		Corollary	. 134
	7.14.	Fauilibrium States for A Not Hölder Continuous.	. 135

Contents xiii

7.15.	Conjugate Points and Conjugating Homeomorphisms.	130
7.16.		
7.17.	Proposition	13
7.18.	Gibbs States	138
7.19.	Gibbs States	138
7.20.	Theorem	
7.21.	Study of Periodic Points by Symbolic Dynamics	140
7.22.	Proposition	140
7.23.	Zeta Functions.	140
7.24.	Proposition. Zeta Functions. Theorem. Corollary	142
7.25.	Corollary	143
7.26.	Corollary	143
7.27.	Remarks	145
7.28.	Remarks	145
7.29.	Markov Partitions	146
7.30.	Theorem	146
7.31.	Theorem. Applications. Notes	147
	Notes	149
	Exercises	149
Appendix A.1.	Miscellaneous Definitions and Results	153
A.1.1.		
A.1.2.	Order	53
A.1.3.	Upper Semi-continuity	54
A.1.4.	Subadditivity	54
Appendix A.2.	Topological Dynamics	
Appendix A.3.	Convexity	57
A.3.1.	Generalities	57
A.3.2.	Hahn-Banach Theorem	57
. A.3.3.	Separation Theorems	58
A.3.4.	Convex Compact Sets	58
A.3.5.	Extrema Points	38
A.3.6.	Tangent Functionals to Convex Functions	59
A.3.7.	Multiplicity of Tangent Functionals	59
Appendix A.4.	Measures and Abstract Dynamical Systems 1	61
A.4.1.	Measures on Compact Sets	61
A.4.2.	Abstract Measure Theory	62
A.4.3.	Abstract Dynamical Systems	62
A.4.4.	Bernoulli Shifts	

xiv Contents

	A.4.5.	Partitions	63
	A.4.6.	komorphism Theorems	64
A	ppendix A.5.	Integral Representations on Convex Compact Sets 1	65
LI	A.5.1.	Resultant of a Measure	65
	A.5.2.	Maximal Measures	00
	A.5.3.	Uniqueness Problem	166
	A.5.4.	Maximal Measures and Extremal Points	66
	A.5.5.	Simplexes of Measures	67
	A.5.6.	Z'-Invariant Measures	67
KI		사용하다면서 사용하다면 하고 있는데 가게 되었다. 그 아이들은 사용하다면 보고 있다고 있다고 하는데 되었다.	
	Appendix B.	Open Problems	69
	B.1.	Systems of Conditional Probabilities (Chapter 2) 1	
5.1	B.2.	Theory of Phase Transitions (Chapter 3)	69
	B.3.	Abstract Measure-Theory Viewpoint (Chapter 4) 1	69
41	B.4.	A Theorem of Dobrushin (Chapter 5)	70
	B.5.	Definition of the Pressure (Chapter 6)	
15	B.6.	Shub's Entropy Conjecture (Chapter 6)	70
**	B.7.	The Condition (SS3) (Chapter 7)	70
	B.8.	Gibbs States on Smale Spaces (Chapter 7)	170
5.5	B.9.	Cohomological Interpretation	70
F-1	B.10.	Cohomological Interpretation	70
2-1		anti-out-filter-field	
44	Appendix C	Flows	71
15		winner of federal and CA allower A	
	C.1.	Thermodynamic Formalism or a Metrizable Compact	
21		Set	71
*	C.2.	Special Flows	72
51	C.3.	Special Flow over a Smale Space	72
	C.4.	Problems	1/3
97	References	N. S.A. Separation Theorems N. S.A. Unived Compact Sets	75
2	Index		81
7 F	100000000000000000000000000000000000000		
21	1 1 1 1 1 1 1 1 1	A.3.5 Extremal Points.	

Appendix A.4.

to conform to standard technical anduction a same of this

0.1 Generalities described to the domain of an array and art I

The formalism of equilibrium statistical mechanics—which we shall call thermodynamic formalism—has been developed since G. W. Gibbs to describe the properties of certain physical systems. These are systems consisting of a large number of subunits (typically 10²⁷) like the molecules of one liter of air or water. While the physical justification of the thermodynamic formalism remains quite insufficient, this formalism has proved remarkably successful at explaining facts.

In recent years it has become clear that, underlying the thermodynamic formalism, there are mathematical structures of great interest: the formalism hints at the good theorems, and to some extent at their proofs. Outside of statistical mechanics proper, the thermodynamic formalism and its mathematical methods have now been used extensively in constructive quantum field theory* and in the study of certain differentiable dynamical systems (notably Anosov diffeomorphisms and flows). In both cases the relation is at an abstract mathematical level, and fairly inobvious at first sight. It is evident that the study of the physical world is a powerful source of inspiration for mathematics. That this inspiration can act in such a detailed manner is a more remarkable fact, which the reader will interpret according to his own philosophy.

The main physical problem which equilibrium statistical mechanics tries to clarify is that of phase transitions. When the temperature of water is lowered, why do its properties change first smoothly, then suddenly as the freezing point is reached? While we have some general ideas about this, and many special results, a conceptual understanding is still missing.† The

ENCYCLOPEDIA OF MATHEMATICS and Its Applications, Gian-Carlo Rota (ed.). Vol. 5: David Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics

Copyright © 1978 by Addison-Wesley Publishing Company, Inc., Advanced Book Program. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical photocopying, recording, or otherwise, without the prior permission of the publisher.

^{*}See for instance Velo and Wightman [1].

[†]At a more phenomenological level, a good deal is known about phase transitions and much attention has been devoted to critical points and "critical phenomena"; the latter remain however for the moment inaccessible to rigorous investigations.

mathematical investigation of the thermodynamic formalism is in fact not completed; the theory is a young one, with emphasis still more on imagination than on technical difficulties. This situation is reminiscent of preclassic art forms, where inspiration has not been castrated by the necessity to conform to standard technical patterns. We hope that some of this juvenile freshness of the subject will remain in the present monograph!

The physical systems to which the thermodynamic formalism applies are idealized to be actually infinite, i.e. to fill R^{ν} (where $\nu=3$ in the usual world). This idealization is necessary because only infinite systems exhibit sharp phase transitions. Much of the thermodynamic formalism is concerned with the study of *states* of infinite systems.

For classical systems the states are probability measures on an appropriate space of infinite configurations; such states can also be viewed as linear functionals on an abelian algebra (an algebra of continuous functions in the case of Radon measures). For quantum systems the states are "expectation value" linear functionals on non-abelian algebras. Due to their greater simplicity, classical systems have been studied more than quantum systems. In fact attention has concentrated on the simplest systems, the classical lattice systems where \mathbb{R}^p is replaced by \mathbb{Z}^p (a p-dimensional crystal lattice). For such systems the configuration space is a subset Ω of $\prod_{x \in \mathbb{Z}^p} \Omega_x$ (where Ω_x is for instance the set of possible "spin values" or "occupation numbers" at the lattice site x). We shall assume that Ω_x is finite. Due to the group invariance (under \mathbb{Z}^p or \mathbb{R}^p) the study of states of infinite systems is closely related to ergodic theory. There are however other parts of the thermodynamic formalism concerned with quite different questions (like analyticity problems).

The present monograph addresses itself to mathematicians. Its aim is to give an account of part of the thermodynamic formalism, and of the corresponding structures and methods. We have restricted ourselves to classical lattice systems. The thermodynamic formalism extends to many other classes of systems, but the theory as it exists now for those systems is less complete, more singular, and filled with technical difficulties. The formalism which we shall describe would not apply directly to the problems of constructive quantum field theory, but it is appropriate to the discussion of Anosov diffeomorphisms and related dynamical systems.

The mathematics underlying the thermodynamic formalism consists of general methods and special techniques. We have restricted ourselves in this monograph to the general methods; we hope that a complement on special techniques will be published later. As a rough rule, we have decided that a result was not "general" if it required that the configuration space of the system factorize completely in the form $\Omega = \Pi \Omega_x$, where Ω_x is the finite set of "spin values" at the lattice site x. The body of general methods thus defined has considerable unity. As for the special techniques, let us mention the correlation inequalities, the method of integral equations, the

Lee-Yang circle theorem, and the Peierls argument. These techniques look somewhat specialized from the general point of view taken in this monograph, but are often extremely elegant. They provide, in special situations, a variety of detailed results of great interest for physics.

0.2 Description of the Thermodynamic Formalism

The contents of this section are not logically required for later chapters. We describe here, for purposes of motivation and orientation, some of the ideas and results of the thermodynamic formalism.* The reader may go over this material rapidly, or skip it entirely.

I. Finite systems

Let Ω be a non-empty finite set. Given a probability measure σ on Ω we define its *entropy*

where it is understood that $t \log t = 0$ if t = 0. Given a function $U: \Omega \to \mathbb{R}$, we define a real number Z called the *partition function* and a probability measure ρ on Ω called the *Gibbs ensemble* by

$$Z = \sum_{\xi \in \Omega} \exp[-U(\xi)],$$

$$\rho\{\xi\} = Z^{-1} \exp[-U(\xi)].$$
(0.1)

Proposition (Variational principle). The maximum of the expression †

dool to a line seek word land
$$S(\sigma) - \sigma(U)$$
 and the seek word land $S(\sigma) - \sigma(U)$

over all probability measures σ on Ω is $\log Z$, and is reached precisely for $\sigma = \rho$.

For physical applications, Ω is interpreted as the space of configurations of a finite system. One writes $U = \beta E$, where $E(\xi)$ is the energy of the configuration ξ , and $\beta = 1/kT$, where T is the absolute temperature and k is a factor known as Boltzmann's constant. The problem of why the Gibbs ensemble describes thermal equilibrium (at least for "large systems") when

^{*}We follow in part the Séminaire Bourbaki, exposé 480.

We write $\sigma(U) = \sum_{\xi} \sigma(\xi) U(\xi)$ or more generally $\sigma(U) = \int U(\xi) \sigma(d\xi)$.

the above physical identifications have been made is deep and incompletely clarified. Note that the energy E may depend on physical parameters called "magnetic field," "chemical potential," etc. Note also that the traditional definition of the energy produces a minus sign in $\exp[-\beta E]$, which is in practice a nuisance. From now on we absorb β in the definition of U, and call U the energy. We shall retain from the above discussion only the hint that the Gibbs ensemble is an interesting object to consider in the limit of a "large system."

The thermodynamic formalism studies measures analogous to the Gibbs ensemble ρ in a certain limit where Ω becomes infinite, but some extra structure is present. Imitating the variational principle of the above Proposition, one defines *equilibrium states* (see II below). Imitating the definition (0.1), one defines *Gibbs states* (see III below).

II. Thermodynamic formalism on a metrizable compact set

Let Ω be a non-empty metrizable compact set, and $x \to \tau^x$ a homomorphism of the additive group \mathbf{Z}^{ν} ($\nu \ge 1$) into the group of homeomorphisms of Ω . We say that τ is *expansive* if, for some allowed metric d, there exists $\delta > 0$ such that

$$(d(\tau^x \xi, \tau^x \eta) \le \delta \quad \text{for all } x) \implies (\xi = \eta).$$

Definition of the pressure. If $\mathfrak{A} = (\mathfrak{A}_i)$, $\mathfrak{B} = (\mathfrak{B}_j)$ are covers of Ω , the cover $\mathfrak{A} \vee \mathfrak{B}$ consists of the sets $\mathfrak{A}_i \cap \mathfrak{B}_j$. This notation extends to any finite family of covers. We write

$$\tau^{-x}\mathfrak{A} = (\tau^{-x}\mathfrak{A}_i),$$

$$\mathfrak{A}^{\Lambda} = \bigvee_{x \in \Lambda} \tau^{-x}\mathfrak{A} \quad \text{if} \quad \Lambda \subset \mathbf{Z}^{\nu},$$

$$\operatorname{diam} \mathfrak{A} = \sup_{i} \operatorname{diam} \mathfrak{A}_i,$$

where diam \mathfrak{A}_i is the diameter of \mathfrak{A}_i for an allowed metric d on Ω .

The definition of the pressure which we shall now give will not look simple and natural to someone unfamiliar with the subject. This should not alarm the reader: the definition will give us quick access to a general statement of theorems of statistical mechanics. It will otherwise recur only in Chapter 6, with more preparation.

We denote by $\mathcal{C} = \mathcal{C}(\Omega)$ the space of continuous real functions on Ω . Let $A \in \mathcal{C}$, \mathfrak{A} be a finite open cover of Ω , and Λ be a finite subset of \mathbf{Z}'' ; define

$$Z_{\Lambda}(A, \mathfrak{A}) = \min \left\{ \sum_{j} \exp \left[\sup_{\xi \in \mathfrak{P}_{j}} \sum_{x \in \Lambda} A(\tau^{x} \xi) \right] \right\}$$

$$: (\mathfrak{B}_{j}) \text{ is a subcover of } \mathfrak{A}^{\Lambda} \right\}.$$

If $a^1, ..., a^{\nu}$ are integers >0, let $a=(a^1, ..., a^{\nu})$ and

$$\Lambda(a) = \{(x^1, ..., x^{\nu}) \in \mathbf{Z}^{\nu} : 0 \le x^i < a^i \text{ for } i = 1, ..., \nu\}.$$

The function $a \rightarrow \log Z_{\Lambda(a)}(A, \mathfrak{A})$ is subadditive, and one can write (with $|\Lambda(a)| = \operatorname{card} \Lambda(a) = \prod_i a^i$)

$$P(A, \mathfrak{A}) = \lim_{a^1, \dots, a^r \to \infty} \frac{1}{|\Lambda(a)|} \log Z_{\Lambda(a)}(A, \mathfrak{A})$$
$$= \inf_{a} \frac{1}{|\Lambda(a)|} \log Z_{\Lambda(a)}(A, \mathfrak{A}),$$

and

$$P(A) = \lim_{\text{diam } \mathfrak{A} \to 0} P(A, \mathfrak{A}).$$

The function $P: \mathcal{C} \to \mathbb{R} \cup \{+\infty\}$ is the (topological) pressure. P(A) is finite for all A if and only if P(0) is finite; in that case P is convex and continuous (for the topology of uniform convergence in \mathcal{C}). P(0) is the topological entropy; it gives a measure of the rate of mixing of the action τ .

Entropy of an invariant measure. If σ is a probability measure on Ω , and $\mathfrak{A} = (\mathfrak{A}_i)$ a finite Borel partition of Ω , we write

$$H(\sigma,\mathfrak{A}) = -\sum_{i} \sigma(\mathfrak{A}_{i}) \log \sigma(\mathfrak{A}_{i}).$$

The real measures on Ω constitute the dual \mathcal{C}^* of \mathcal{C} . The topology of weak dual of \mathcal{C} on \mathcal{C}^* is called the *vague* topology. Let $I \subset \mathcal{C}^*$ be the set of probability measures σ invariant under τ , i.e. such that $\sigma(A) = \sigma(A \circ \tau^x)$; I is convex and compact for the vague topology. If \mathfrak{A} is a finite Borel partition and $\sigma \in I$, we write

$$h(\sigma, \mathfrak{A}) = \lim_{\substack{a^1, \dots, a^r \to \infty \\ a}} \frac{1}{|\Lambda(a)|} H(\sigma, \mathfrak{A}^{\Lambda(a)})$$

$$= \inf_{\substack{a}} \frac{1}{|\Lambda(a)|} H(\sigma, \mathfrak{A}^{\Lambda(a)});$$

$$h(\sigma) = \lim_{\substack{\dim \mathfrak{A} \to 0}} h(\sigma, \mathfrak{A}).$$

The function $h: I \to \mathbb{R} \cup \{+\infty\}$ is affine ≥ 0 ; it is called the (mean) *entropy*. If τ is expansive, h is finite and upper semi-continuous on I (with the vague topology).

Theorem 1 (Variational principle).

$$P(A) = \sup_{\sigma \in I} [h(\sigma) + \sigma(A)]$$

for all $A \in C$.

This corresponds to the variational principle for finite systems if -A is interpreted as the contribution to the energy of one lattice site.

The function a-load, (4.9) is subadditive, and one can

Let us assume that P is finite. The set I_A of equilibrium states for $A \in \mathcal{C}$ is defined by

$$I_A = \{ \sigma \in I : h(\sigma) + \sigma(A) = P(A) \}.$$

 I_A may be empty.

Theorem 2 Assume that h is finite and upper semi-continuous on I (with the vague topology).

(a) $I_A = \{ \sigma \in \mathcal{C}^* : P(A+B) \ge P(A) + \sigma(B) \text{ for all } B \in \mathcal{C} \}$. This set is not empty; it is convex, compact; it is a Choquet simplex and a face of I.

(b) The set $D = \{A \in \mathcal{C} : \operatorname{card} I_A = 1\}$ is residual in \mathcal{C} .

(c) For every $\sigma \in I$,

$$h(\sigma) = \inf_{A \in \mathcal{C}} [P(A) - \sigma(A)]. \quad + \quad \text{as a point of }$$

The fact that I_A is a metrizable simplex implies that each $\sigma \in I_A$ has a unique integral representation as the barycenter of a measure carried by the extremal points of I_A . It is known that I is also a simplex. The fact that I_A is a face of I implies that the extremal points of I_A are also extremal points of I (i.e. τ -ergodic measures on Ω).

III. Statistical mechanics on a lattice

The above theorems extend results known for certain systems of statistical mechanics (classical lattice systems). For instance, if F is a non-empty finite set (with the discrete topology), we can take $\Omega = F^{\mathbb{Z}^r}$ with the product topology, and τ^x defined in the obvious manner. More generally we shall take for Ω a closed τ -invariant non-empty subset of $F^{\mathbb{Z}^r}$. For the physical interpretation, note that Ω is the space of infinite configurations of a system of spins on a crystal lattice \mathbb{Z}^r . Up to sign and factors of β , P can be interpreted as the "free energy" or the "pressure," depending on the physical interpretation of F as the set of "spin values" or of "occupation numbers" at a lattice site. For simplicity we have retained the word "pressure."