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Editor’s Statement

A large body of mathematics consists of facts that can be présented and
described much like any other natural phenomenon. These facts, at times
explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely
to survive changes of style and of interest. '

This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the non-specialist, and a
thorough bibliography are required of each author. Volumes will appear in
no particular order, but will be organized into sections, each one compris-
ing a recognizable branch of present-day mathematics. Numbers of
volumes and sections will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied
but where it has not yet penetrated because of insufficient information.

GiaN-CARLO ROTA

Section Editor’s Foreword

Thermodynamics is still, as it always was, at the center of physics, the
standard-bearer of successful science. As happens with many a theory, rich
in applications, its foundations have been murky from the start and have
provided a traditional challenge on which physicists and mathematicians
alike have tested their latest skills.

Ruelle’s book is perhaps the first entirely rigorous account of the
foundations of thermodynamics. It makes heavier demands on the reader’s
mathematical background than any volume published so far. It is hoped
that ancillary volumes in time will be published which will ease the ascent
onto this beautiful and deep theory; at present, much of the background
material can be gleaned from standard texts in mathematical analysis. In
any case, the timeliness of the content shall be ample reward for the
austerity of the text.

GIOVANNI GALLAVOTTI
General Editor, Section on Statistical Mechanics
and
GIAN-CARLO ROTA



Preface

The present monograph is based on lectures given in the mathematics
departments of Berkeley (1973) and of Orsay (1974-75). My aim has been
to describe the mathematical structures underlying the thermodynamic
formalism of equilibrium statistical mechanics, in the simplest case of
classical Jattice spin systems.

The thermodynamic formalism has its origins in physics, but it has now
invaded topological dynamics and differentiable dynamical systems, with
applications to questions as diverse as the study of invariant measures for
an Anosov diffeomorphism (Sinai [3D, or the meromorphy of Selberg’s zeta
function (Ruelle [7]). The present text is an introduction to such questions,
as well as to more traditional problems of statistical mechanics, like that of
phase transitions. [ have developed the general theory—which has consid-
erable unity—in some detail. I have however left aside particular tech-
iiques (like that of correlation inequalities) which are important in discuss-
ing examples of phase transitions, but should be the object of a special
study.

Statistical mechanics extends to systems vastly more general than the
classical lattice spin systems discussed here (in particular to quantum
systems). One can therefore predict that the theory discussed in this
monograph will extend to vastly more general mathematical setups (in
particular to non-commutative situations). I hope that the present text may
contribute some inspiration to the construction of the more general theo-
ries, as well as clarifying the conceptual structure of the existing formalism.

DAviD RUELLE
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CHAPTER 0

Introduction
0.1 Generalities

The formalism of equilibrium statistical mechanics—which we shall call
thermodynamic formalism—-has been developed since G. W. Gibbs to
describe the properties of certain physical systems. These ,are systems
consisting of a large number of subunits (typically 10%”) like the molecules
of one liter of air or water. While the physical justification of the thermo-
dynamic formalism remains quite insufficient, this formalism has proved
remarkably successful at explaining facts.

In recent years it has become clear that, underlying the thermodynamic
formalism, there are mathematical structures of great interest: the for-
malism hints at the good theorems, and to some extent at their proofs.
Outside of statistical mechanics proper, the thermodynamic formalism and
its mathematical methods have now been used extensively in constructive
quantum field theory* and in the study of certain differentiable dynamical
systems (notably Anosov diffeomorphisms and flows). In both cases the
relation is at an abstract mathematical level, and fairly inobvious at first
sight. It is evident that the study of the physical world is a powerful source
of inspiration for mathematics. That this inspiration can act in such a
detailed manner is a more remarkable fact, which the reader will interpret
according to his own philosophy.

The main physical problem which equilibrium statistical mechanics tries
to clarify is that of phase transitions. When the temperature of water is
lowered, why do its properties change first smoothly, then suddenly as the
freezing point is reached? While we have some general ideas about this,
and many special results, a conceptual understanding is still missing.+ The

*See for instance Velo and Wightman [1].

TAt a more phenomenological level, a good deal is known about phase transitions and much
attention has been devoted to critical points and “critical phenomena”; the latier remain
‘however for the moment inaccessible to rigorous investigations.

ENCYCLOPEDIA OF MATHEMATICS and Its Applications, Gian-Carlo Rota (ed.).
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2 Introduction

mathematical investigation of the thermodynamic formalism is in fact not
completed; the theory is a young one, with emphasis still more on imagina-
tion than on technical difficulties. This situation is reminiscent of pre-
classic art forms, where inspiration has not been castrated by the necessity
to conform to standard technical patterns. We hope that some of this
Jjuvenile freshness of the subject will remain in the present monograph!

The physical systems to which the thermodynamic formalism applies are
idealized to be actually infinite, ie. to fill R* (where »=3 in the usual
world). This idealization is necessary because only infinite systems exhibit
sharp phase transitions. Much of the thermodynamic formalism is con-
cerned with the study of states of infinite systems.

For classical systems the states are probability measures on an ap-
propriate space of infinite configurations; such states can also be viewed as
linear functionals on an abelian algebra (an algebra of continuous func-
tions in the case of Radon measures). For quantum systems the states are
“expectation value” linear functionals on non-abelian algebras. Due to
their greater simplicity, classical systems have been studied more than
quantdm systems. In fact attention has concentrated on the simplest
systems, the classical lattice systems where R’ is replaced by Z* (a v-dimen-
sional crystal lattice). For such systems the configuration space is a subset
Q of II, 29, (where Q, is for instance the set of possible “spin values” or
“occupation numbers” at the lattice site x). We shall. assume that Q, is
finite. Due to the group invariance (under 2 or R") the study of states of
infinite systems is closely related to ergodic theory. There are however
other parts of the thermodynamic formalism concerned with quite differ-
ent questions (like analyticity problems).

The present monograph addresses itself to mathematicians. Its aim is to
give an account of part of the thermodynamic formalism, and of the
corresponding structures and methods. We have restricted ourselves to
classical lattice systems. The thermodynamic formalism extends to many
other classes of systems, but the theory as it exists now for those systems 1s
less complete, more singular, and filled with technical difficulties. The
formalism which we shall describe would not apply directly to the prob-
lems of constructive quantum field theory, but it is appropriate to the
discussion of Anosov diffeomorphisms and related dynamical systems. '

The mathematics underlying the thermodynamic formalism consists of
general methods and special techniques. We have restricted ourselves in
this monograph to the general methods; we hope that a complement on
special techniques will be published later. As a rough rule, we have decided
that a result was not “general” if it required that the configuration space of
the system factorize completely in the form Q=I[IQ,, where Q, is the finite
set.of “spin values” at the lattice site x. The body of general methods thus
defined has considerable unity. As for the special techniques, let us
mention the correlation inequalities, the method of integral equations, the

ISBN 0-201-13504-3
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Description of the Thermodynamic Formalism =3

Lee-Yang circle theorem, and the Peierls argument. These techniques look
somewhat specialized from the general point of view taken in this mono-
graph, but are often extremely elegant. They provide, in special situations,
a variety of detailed results of great interest for physics.

0.2 Description of the Thermodynamic Formalism

The contents of this section are not logically required for later chapters.
We describe here, for purposes of motivation and orientation, some of the
ideas and results of the thermodynamic formalism.* The reader may go
over this material rapidly, or skip it entirely.

I. Finite systems

Let § be a non-empty finite set. Given a probability measure o on  we
define its entropy

34 - S(0)=— X o{¢}loga{£},

¢EQ

where it is understood that tlog# =0 if 7=0. Given a function U: Q—R, we
define a real number Z called -the partition function and a probability
measure p on { called the Gibbs ensemble by

z= 3 exp[-U(H)],

I3

| (0.1)
p(§} =2 'exp[ ~U®)]-

Proposition (Variational principle). The maximum of the expressiont
S(o)—0o(U)

over all probability measures o on  is logZ, and is reached precisely for
o=p.

For physical applications,  is interpreted as the space of configurations
of a finite system. One writes U= BE, where E(§) is the energy of the
configuration £, and B=1/kT, where T is the absolute temperature and k
is a factor known as Boltzmann’s constant. The problem of why the Gibbs
ensemble describes thermal equilibrium (at least for “large systems”) when

*We follow in part the Séminaire Bourbaki, exposé 480.
tWe write o(U)=2,0{£} U (§) or more generally a(U)= f U(¢)o(d$).



4 Introduction

the above physical identifications have been made is deep and incom-
pletely clarified. Note that the energy E may depend on physical parame-
ters called *“magnetic field,” “chemical potential,” etc. Note also that the
traditional definition of the energy produces a minus sign in exp[— BE 1,
which is in practice a nuisance. From now on we absorb B in the definition
of U, and call U the energy. We shall retain from the above discussion only
the hint that the Gibbs ensemble is an interesting object to consider in the
limit of a “large system.”

The thermodynamic formalism studies measures analogous to the Gibbs
ensemble p in a certain limit where becomes infinite, but some extra
structure is present. Imitating the variational principle of the above Pro-
position, one defines equilibrium states (see IT below). Imitating the defini-
tion (0.1), one defines Gibbs states (see III below).

IL. Thermodynqmic formalism on a metrizable compact set

Let £ be a non-empty metrizable compact set, and x—7* a homomor-
phism of the additive group Z’ (v > 1) into the group of homeomorphisms

of 2. We say that 7 is expansive if, for sonic allowed metric d, there exists
8 >0 such that

(d(r*&, 7)< 8 forallx) = (£=9).

Definition of the pressure. If % =(31,), B=(B,) are covers of Q, the cover
A\/B consists of the sets ¥, NB;. This notation extends to any finite family
of covers. We write

T U= (777U,
A= \/ 779 b A
XEA

diam % = supdiam ¥,

where diam ¥, is the diameter of %, for an allowed metric d on {.

The definition of the pressure which we shall now give will not look
simple and natural to someone unfamiliar with the subject. This should not
alarm the reader: the definition will give us quick access to a general
statement of theorems of statistical mechanics. It will otherwise recur only
in Chapter 6, with more preparation.

We denote by C = C(€) the space of continuous real functions on {2 Let
4 €C, A be  finite open cover of 2, and A be a finite subset of Z’; define

ZA(A,QI)=min{ Eexp[ sup > A(T‘&)J

J eV . xeA

:(%8,) is a subcover of A ] _

J
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If a',...,a" are integers >0, let a=(a',...,a”) and
A(a)={(x',...,x")EZ":0< x‘<aifori=l,...,v}.

The function a—logZ,,(4.%) is subadditive, and one can write (with
|A(a)|=card A(a)=1l,a’)

P(4, %)= lim

—108Z 5 (4(A4, )
" Sl |A( a) - N

]A( )| lOgZA(a)(A xA),

and

PUD= iy PAT).

The function P: C—RU { + o0} is the (topological) pressure. P(A) is finite
for all A if and only if P(0) is finite; in that case P is convex and
continuous (for the topology of uniform convergence in ©). P(0) is the
topological entrapy; it gives a measure of the rate of mixing of the action 7.

Entropy of an invariant measure. If o is a probability measure on £, and
9 =(,) a finite Borel partition of &, we write

H (0,%)=~ 3 o(¥;)loga ().

i

The real measures on  constitute the dual C* of €. The topology of weak
dual of @ on C* is called the vague topology. Let I CC* be the set of
probability measures ¢ invariant under 7, i.e. such that 6(4)=0(4 °1%); I
is convex and compact for the vague topology. If % is a finite Borel
partition and o € I, we write

= . YA

ho ) a-,.}fff'w [A(a )|H( i)
0. 9@
0 [A(a )IH( e

h(o)= dialnlilﬁltleo h(a,).

The function #: I—-RU { + o0} is affine > 0; it is called the (mean) entropy.
If 7 is expansive, 4 is finite and upper semi-continuous on / (with the vague
topology).
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Theorem 1 (Variational principle).
P(A)=sup[h(o)+0(4)]
o€l

Jor all A€ C.

This corresponds to the variational principle for finite systems if — A4 is
interpreted as the contribution to the energy of one lattice site.
~ Let us assume that P is finite. The set I, of equilibrium states for A €C is
defined by

IA={o€I:h(o)+o(A)=P(A)}.

1, may be empty.

Theorem 2 Assume that h is finite and upper semi-continuous on I (with the
vague topology).

(@) I,={oc€C*:P(4+B)> P(A)+ o(B) for all BEQR). This set is not
emply; it is convex, compact; it is a Choquet simplex and a face of I.

(b) The set D={A€C:cardl, =1} is residual in C.

(c). For every 6 €1,

h(o)= inf [P(A)=o(4)].  “+ .

The fact that I, is a metrizable simplex implies that each 0€El, has a
unique integral representation as the barycenter of a measure carried by
the extremal points of Z,. It is known that 7 is also a simplex. The fact that
I, is a face of I implies that the extremal points of I ', are also extremal
points of I (i.e. r-ergodic measures on ).

III. Statistical mechanics on a lattice

The above theorems extend results known for certain systems of statisti-
cal mechanics (classical lattice systems). For instance, if F is a non-empty
finite set (with the discrete topology), we can take = FZ with the product
topology, and 7* defined in the obvious manner. More generally we shall
take for @ a closed r-invariant non-empty subset of FZ. For the physical
interpretation, note that @ is the space of infinite configurations of a
system of spins on a crystal lattice 2. Up to sign and factors of B, P can
be interpreted as the “free energy” or the “pressure,” depending on the
physical interpretation of F as the set of “spin values” or of “occupation
numbers” at a lattice site. For simplicity we have retained the word
“pressure.”
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