\Usmg the IBM PC:
O\r anization and
Assembly Language
Programming

Mark Frankiin

| | / ‘ .
| J e CBS Computer Books

Using the IBM
Personal
Computer:

Organization and
Assembly Language
Programming

Mark A. Franklin

Departments of Electrical Engineering and Computer Science
Washington University
St. Louis, Missouri

HOLT, RINEHART AND WINSTON

New York Chicago San Franci 'SCo Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid

The cover illustration is the additive color model from Miles Color Art, Tallahassee, Florida
prepared using the digital facsimiles process (patent pending), Center for Color Graphics,
Florida State University, Tallahassee, Florida.

IBM ® is a registered trademark of International Business Machines Corporation.

Copyright © 1984 CBS College Publishing

All rights reserved.

Address correspondence to:

383 Madison Avenue, New York, NY 10017

First distributed to the trade in 1984 by Holt, Rinehart and Winston general book division.

Library of Congress Cataloging in Publication Data

Franklin, Mark A., 1940-
Using the IBM Personal Computer

Bibliography: p.

Includes index.

1. IBM Personal Computer. 2. IBM Personal Computer—
Programming. 3. Assembler language (Computer program
language) I. Title. II. Title: The 1.B.M. Personal
Computer.

QA76.8.12594F73 1985 - 001.64 84-10865
ISBN 0-03-062862-8 (pbk.)

ISBN 0-03-0k28k2-8
Printed in the United States of America
Published simultaneously in Canada
456 039 987654321
CBS COLLEGE PUBLISHING

Holt, Rinehart and Winston

The Dryden Press
Saunders College Publishing

Using the IBM
Personal
- Computer:

Organization and
Assembly
Language

Programming

Preface

This book is intended for those who seek to go beneath the exterior view presented by
higher-level computer languages, and understand the operation of the IBM Personal
Computer (PC) at a deeper level. Accordingly, the book focuses on the architecture
and operation of the IBM PC and its machine and macro assembly languages. In
addition, we explore the operating system and BIOS (Basic Input/Output System)
facilities available at the assembly language level, and we present techniques for inter-
facing assembly language programs with those written in higher-level languages. Included
is all the essential material necessary to program effectively in assembly language.

The Intel 8088 Microprocessor provides the core computing engine for the IBM
PC; consequently, the book contains a great deal of material on the operation of this
powerful 16-bit microprocessor. A thorough understanding of this material provides a
sound basis for understanding the operation of many contemporary computers.

There are numerous practical situations where knowledge of machine organization
and assembly language programming is necessary or even essential. These situations
generally require that more control be exerted over the internal operations of the com-

xiii

Xiv Preface

puter than is typically afforded by higher-level languages. Such control, for example,
may be needed to achieve maximum speed. A higher-level language may be adequate
from a logical point of view, but the programs generated may be too slow for the
application in question. Close control over the computer at the assembly language level
can often exploit the computer’s resources in a more efficient manner. Toward this end,
special attention is devoted (Chapter 11) to the problem of interfacing assembly lan-
guage routines with higher-level-language routines. This allows use of the simpler and
more powerful programming constructs available in higher-level languages for most
programming activity while using assembly language programs for time-critical sections.

Assembly language programming is also needed when close control over standard
input/output devices is required, or when special input/output devices are to be inter-
faced to the computer. Chapter 10 covers the operation and control of several standard
devices using BIOS.

Moreover, special applications sometimes require that modifications or additions
be made to the computer’s overall control program or operating system. Such modifi-
cations typically must be done at the assembly language level. Techniques for imple-

menting such adjustments are discussed in Chapter 9, which contains a review of the

disk operating system’s function calls and their use.

Although the book centers on the IBM PC, the bulk of the material also applies
to the IBM PCjr and IBM PC/XT computers. All of these systems use the Intel 8088
Microprocessor and therefore employ the same machine and assembly languages. By
the same token, the book also can be used to learn assembly language programming
on the host of compatible computers now available. This includes systems based on
the Intel 8086 Microprocessor, which is faster than the Intel 8088 but functionally
identical to it.

This text supports a comprehensive introductory course on computer organization
and assembly language programming for people with some background in higher-level-
language programming and general notions relating to algorithms and programs. There
is no hardware or logic design background required, and any material needed in this
area is contained in the text. The book can be used in a formal course setting or as a
guide for self-study. Numerous examples are provided in the text, and each chapter
concludes with a summary of the main points and a set of problems to help reinforce
the material. To take full advantage of the material, an IBM Personal Computer (or
compatible equivalent) should be available. The best way to learn assembly language,
or for that matter any programming language, is to work problems and write, debug,
and run programs.

The book is divided into two major parts: Part I, Chapters 1 through 7, contains
basic material on computer organization, operation, instruction set, and assembly lan-
guage which is needed to write assembly language programs. Part II, Chapters 8 through
11, contains advanced material on macros, interrupts, and DOS (Disk Operating Sys-
tem) and BIOS facilities, with the concluding chapter dealing with higher-level-lan-
guage—assembly language interfacing techniques. Skill in assembly language program-
ming can be achieved by concentrating initially on Part I, after which more specialized
material in Part II can be acquired as needed. Once the language and its associated
facilities have been mastered, the book will continue to serve as a useful reference.

Preface Xxv

I am grateful to my colleagues at Washington University and elsewhere for their
support in this endeavor. Particular thanks goes to Sy Pollack for his cheerful encour-
agement and careful reading of the book, to Tom Patterson for his help in developing
and debugging example programs, to Howard Bomze for his close reading of Chapters
9 and 10, and to my brother David for his steadfast optimism that it would get done.
My thanks also to CBS Educational Publishing and to the CBS book reviewers who
made many valuable suggestions. Finally, I want to thank my wife, children, and friends
who had to put up with my replies of the form, “I'm sorry, I have to go work on the
book.” but nevertheless remained faithful.

The book is dedicated to my wife, Barbara, and to my parents, Jack and Celia
Franklin, without whose understanding and help this would not have been possible.

Contents

Preface xiii
PART I THE BASICS

1 INTRODUCTION AND OVERVIEW 3

1.1 Computer Organization S5
1.1.1 Memory Unit 6
1.1.2 Control Unit 7
1.1.3 Arithmetic/Logic Unit 9
1.1.4 Input and Output Units 11

1.2 The Intel 8088 Microprocessor 11

Vi Contents

1.3 Software Organization 13
1.3.1 Software Design and Development 13
1.3.2 Software Environment and Tools 15
1.3.3 Algorithm Development and Documentation 17
1.3.4 Assembler Preliminaries 18
1.3.5 The Overall Implementation Process 23

1.4 Summary 25

Exercises 25

2 DATA AND NUMBER REPRESENTATION 29
2.1 Bits, Bytes, Words, and Data Pseudo-Operations 30

2.2 Number Representation 32
2.2.1 Number Systems 32
2.2.2 Number System Conversion 34
2.2.3 Signed Numbers 38
2.2.4 Range, Precision, and Floating-point Numbers 44
2.2.5 Binary-Coded Decimal (BCD) Numbers 51

2.3 Alphanumeric Character Representation 53
2.4 Summary 56

Exercises 57

3 COMPUTER ORGANIZATION 60

3.1 Memory Organization 60
3.1.1 The Memory Space 60
3.1.2 The Segment Registers 62
3.1.3 Instruction Fetching and the Instruction Pointer 64
3.1.4 Segmented Memory 65

3.2 Addressing Modes and Effective Address Calculations 67
3.2.1 The General Registers 67
3.2.2 Addressing Modes 69

3.3 Instruction Formats and Encoding 79

Contents Vil

3.4 The Flag Register 84
3.4.1 Status and Control Flags 84

3.5 Summary 87

Exercises 88

4 PROGRAM CONTROL AND DECISION MAKING 91
4.1 Stacks 9]
4.2 Procedures 94
4.2.1 Procedure Calls and Returns 95
4.2.2 Procedure Parameter Transfer 100
4.3 Instructions to Transfer Program Control 104
4.3.1 Unconditional Transfers 104
4.3.2 Conditional Transfers 107
4.3.3 TIteration Control 108
4.3.4 Interrupts (An Introduction) 110
4.4 Recursive Procedures 110

4.5 Summary 112

Exercises 113

5 ARITHMETIC INSTRUCTIONS 116
5.1 Integer Addition and Subtraction 116
5.2 Integer Multiplication and Division 120
5.3 Sign Extension 121
5.4 ASCII and Decimal Addition and Subtraction 122
5.5 ASCII Multiplication and Division 124
5.6 Summary 126

Exercises 127

.

viii Contents

6 OTHER INTERNAL OPERATIONS 129

6.1 Instructions for Data Transfer 129
6.1.1 General-purpose Transfers 131
6.1.2 Address Object Transfers 133
6.1.3 Flag Transfers 134
6.1.4 Input/Output Transfers 134

6.2 Bit Manipulation Instructions 134

6.2.1 Bit-Oriented Logic 134

6.2.2 Shift and Rotate 137
6.3 String Instructions 139

6.3.1 String Moves and Repeats 139

6.3.2 String Compare and Scan 143

6.3.3 Store, Load, and Complex String Operations
6.4 Process Control Instructions 146

6.4.1 Flag Instructions 146

6.4.2 Synchronization and NOP Instructions 146
6.5 Summary 148

Exercises 148

7 ASSEMBLY LANGUAGE 151
7.1 An Overview 151
7.2 Constants, Variables, Labels, and Their Attributes 157
7.2.1 Constants 157
7.2.2 Variables 159
7.2.3 Labels 161

7.3 Assembler Expressions and Operators 162

7.4 Pseudo-Operation Statements 168

145

7.4.1 Module Definition and Symbol Exchange 168

7.4.2 Segment Definition 170

7.4.3 Procedure Definition 172

7.4.4 Data Definition 172

7.4.5 Symbol Definition 172

7.4.6 Location Counter Specification 174
7.4.7 Other Pseudo-Ops 175

7.5 Summary 176

Exercises 177
PART I ADVANCED TOPICS

8 ADVANCED ASSEMBLY LANGUAGE FEATURES

8.1 An Introduction to Assembler Macros 181

8.2 Macro Pseudo-Ops 185
8.2.1 Macro Definition and Expansion
8.2.2 Repeated Macros 187
8.2.3 The LOCAL, PURGE, and EXIT
Pseudo-Ops 189

8.3 Macro Libraries 190

181

185

M Macro

8.4 An Introduction to Conditional Assembly 190

8.5 Conditional Pseudo-Ops 193
8.6 Recursive Macro Calls 197

8.7 Summary 199

Exercises 200

$ INTERRUPTS, TRAPS, and DOS 202

9.1 Interrupt Instructions and Types 203
9.1.1 Software Interrupts 203
9.1.2 Hardware Interrupts 209

9.2 8088 and 8259 Hardware Interrupts 211
9.2.1 8088 Interrupts (Types 0 to 7)
9.2.2 8259 Interrupts (Types 8 to FH)
9.2.3 Miscellaneous Software Interrupts
(Types 18H to 1CH) 216

9.3 DOS Interrupts (Types 20H to 3FH) 219
9.3.1 Displaying Messages with DOS
9.3.2 Reading the Keyboard with DOS
9.3.3 Printing with DOS 231

211
213

223
228

Contents iX

X Contents

9.4 Summary 231

Exercises 233

10 INPUT/OUTPUT PROGRAMMING WITH BIOS 235
10.1 The Keyboard (A Type 16H Interrupt) 236
10.2 The Printer (A Type 17H Interrupt) 240

10.3 The Display (A Type 10H Interrupt) 242
10.3.1 The Monochrome Display 243
10.3.2 The Color/Graphics Display 250

10.4 The Asynchronous Communication Adapter
(A Type 14H Interrupt) 256

10.5 The Diskette Adapter (A Type 13H Interrupt) 260
10.6 Generating Sounds 264

10.7 Determining Equipment Configuration
(Types 11H and 12H Interrupts) 266

10.8 Summary 269

Exercises 270

11 HIGHER-LEVEL-LANGUAGE INTERFACING 274

11.1 Two Example Applications 275
11.1.1 A Stock Market Simulation Problem 275
11.1.2 Assembly Language Market Simulation Program 277
11.1.3 A Graphics Problem 280
11.1.4 Assembly Language Screen Mode and Line-Drawing
Programs 284

11.2 Interfacing with BASIC 289
11.2.1 BASIC Instructions for Loading and Calling Assembly
Language Procedures 290
11.2.2 Debugging Assembly Language Programs Interfaced to
BASIC 292

Contents XI

11.2.3 Constructing Memory Image Files for Use with
BLOAD 294

11.2.4 The Stock Market Simulation Problem with
BASIC 294

11.2.5 The Graphics Problem with BASIC 297

11.3 Interfacing with FORTRAN 299

11.3.1 Calling Assembly Language Procedures and Passing
Parameters in FORTRAN 299

11.3.2 Debugging Assembly Language Programs Interfaced to
FORTRAN 301

11.3.3 The Stock Market Simulation Problem with
FORTRAN 302

11.3.4 The Graphics Problem with FORTRAN 303

11.4 Interfacing with PASCAL 304
11.4.1 PASCAL Interfacing Methods 304
11.4.2 The Stock Market Simulation Problem with
PASCAL 308
11.4.3 The Graphics Problem with PASCAL 308
11.5 Summary 308

Exercises 310

APPENDIX A: IBM PC MEMORY MAP 313
APPENDIX B: 8086/88 INSTRUCTION ENCODING 314

APPENDIX C: INSTRUCTION SET SUMMARY 322
REFERENCES 337

INDEX 341

Part

|
The
Basics

Introduction
and
Overview

Development of the Large Scale Integration and Very Large Scale Integration (LSI and
VLSI) of digital circuits has dramatically lowered the price and increased the perfor-
mance of computers. This effect, coupled with a large and favorable market response,
has resulted in what is called “the personal computer.” Computers in this class are
personal in at least two senses. First, they are inexpensive enough so that many “per-
sons” can now afford to purchase one for themselves. Second, the expectation is that
they will often be used in ways determined primarily by the individual user. Their low
cost is giving users increased freedom to explore new application areas ranging from
use as very smart terminals to dedicated use as processors for a host of other applications.

Often the computer is purchased and used as a packaged, or “turnkey,” system
where both the hardware and software have been tailored to an application of interest.
Dedicated word processing systems fall into this category. In many situations users
will program applications for themselves in higher-level languages such as BASIC,
FORTRAN, or PASCAL. Such languages significantly ease the task of programming
and should be used whenever possible. Use of these languages allows one to concentrate

3

