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Preface

This book is intended for those who seek to go beneath the exterior view presented by
higher-level computer languages, and understand the operation of the IBM Personal
Computer (PC) at a deeper level. Accordingly, the book focuses on the architecture
and operation of the IBM PC and its machine and macro assembly languages. In
addition, we explore the operating system and BIOS (Basic Input/Output System)
facilities available at the assembly language level, and we present techniques for inter-
facing assembly language programs with those written in higher-level languages. Included
is all the essential material necessary to program effectively in assembly language.

The Intel 8088 Microprocessor provides the core computing engine for the IBM
PC; consequently, the book contains a great deal of material on the operation of this
powerful 16-bit microprocessor. A thorough understanding of this material provides a
sound basis for understanding the operation of many contemporary computers.

There are numerous practical situations where knowledge of machine organization
and assembly language programming is necessary or even essential. These situations
generally require that more control be exerted over the internal operations of the com-
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Xiv  Preface

puter than is typically afforded by higher-level languages. Such control, for example,
may be needed to achieve maximum speed. A higher-level language may be adequate
from a logical point of view, but the programs generated may be too slow for the
application in question. Close control over the computer at the assembly language level
can often exploit the computer’s resources in a more efficient manner. Toward this end,
special attention is devoted (Chapter 11) to the problem of interfacing assembly lan-
guage routines with higher-level-language routines. This allows use of the simpler and
more powerful programming constructs available in higher-level languages for most
programming activity while using assembly language programs for time-critical sections.

Assembly language programming is also needed when close control over standard
input/output devices is required, or when special input/output devices are to be inter-
faced to the computer. Chapter 10 covers the operation and control of several standard
devices using BIOS.

Moreover, special applications sometimes require that modifications or additions
be made to the computer’s overall control program or operating system. Such modifi-
cations typically must be done at the assembly language level. Techniques for imple-

menting such adjustments are discussed in Chapter 9, which contains a review of the

disk operating system’s function calls and their use.

Although the book centers on the IBM PC, the bulk of the material also applies
to the IBM PCjr and IBM PC/XT computers. All of these systems use the Intel 8088
Microprocessor and therefore employ the same machine and assembly languages. By
the same token, the book also can be used to learn assembly language programming
on the host of compatible computers now available. This includes systems based on
the Intel 8086 Microprocessor, which is faster than the Intel 8088 but functionally
identical to it.

This text supports a comprehensive introductory course on computer organization
and assembly language programming for people with some background in higher-level-
language programming and general notions relating to algorithms and programs. There
is no hardware or logic design background required, and any material needed in this
area is contained in the text. The book can be used in a formal course setting or as a
guide for self-study. Numerous examples are provided in the text, and each chapter
concludes with a summary of the main points and a set of problems to help reinforce
the material. To take full advantage of the material, an IBM Personal Computer (or
compatible equivalent) should be available. The best way to learn assembly language,
or for that matter any programming language, is to work problems and write, debug,
and run programs.

The book is divided into two major parts: Part I, Chapters 1 through 7, contains
basic material on computer organization, operation, instruction set, and assembly lan-
guage which is needed to write assembly language programs. Part II, Chapters 8 through
11, contains advanced material on macros, interrupts, and DOS (Disk Operating Sys-
tem) and BIOS facilities, with the concluding chapter dealing with higher-level-lan-
guage—assembly language interfacing techniques. Skill in assembly language program-
ming can be achieved by concentrating initially on Part I, after which more specialized
material in Part II can be acquired as needed. Once the language and its associated
facilities have been mastered, the book will continue to serve as a useful reference.
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Introduction
and
Overview

Development of the Large Scale Integration and Very Large Scale Integration (LSI and
VLSI) of digital circuits has dramatically lowered the price and increased the perfor-
mance of computers. This effect, coupled with a large and favorable market response,
has resulted in what is called “the personal computer.” Computers in this class are
personal in at least two senses. First, they are inexpensive enough so that many “per-
sons” can now afford to purchase one for themselves. Second, the expectation is that
they will often be used in ways determined primarily by the individual user. Their low
cost is giving users increased freedom to explore new application areas ranging from
use as very smart terminals to dedicated use as processors for a host of other applications.

Often the computer is purchased and used as a packaged, or “turnkey,” system
where both the hardware and software have been tailored to an application of interest.
Dedicated word processing systems fall into this category. In many situations users
will program applications for themselves in higher-level languages such as BASIC,
FORTRAN, or PASCAL. Such languages significantly ease the task of programming
and should be used whenever possible. Use of these languages allows one to concentrate
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