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FOREWORD

From September 29 to October 10, 1986, the University of Zagreb
sponsored a Postgraduate School and Conference on Geometric Topology
and Shape Theory at the Interuniversity Centre of Postgraduate studies,
Dubrovnik, Yugoslavia. This was the third such school and conference
held at the Centre. The two previous ones were held from January 12
to January 30, 1976 and from January 19 to January 30, 1961.

The meeting was devoted to the interaction of Geometric Topolo-
gy and Shape Theory. In particular, the aim was to cover the following
topics: decomposition theory, cell-like mappings and CE-equivalent
compacta, infinite-dimensional spaces, approximate fibrations and
shape fibrations, fibered shape, ANR’s and LCn-compacta,manifolds
and generalized manifolds, embeddings of continua into manifolds, com-
plement theorems in shape theory, shape-theoretic methods in group

theory, exact homologies and strong shape theory.

The articles in the Proceedings appear in alphabetic order

by author.
The addresses of all participants and authors of contributed

papers are given at the end of the volume.

S.Mardesié
J.Segal
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AN ALTERNATIVE PROOF OF M. BROWN’S THEOREM
ON INVERSE SEQUENCES OF NEAR HOMEOMORPHISMS

by Fredric D. Ancel

Abstract. Theorem 4 of [B] is an interesting and useful result about inverse
sequences of near homeomorphisms. We present a short alternative proof of
this theorem. We thank Bob Daverman for a suggestion which has led to a

slicker exposition.

Let (X, p) and (Y, ) be compact metric spaces. Let (X, Y') denote the space of maps from
X toY endowed with the compact-open topology. A complete metric @ on (X, Y) is defined by
7(f,9) =sup{o(f(z),9(z) :z € X}. Amap from X toY is a near homeomorphism if it belongs to
the closure of the set of homeomorphisms in M(X,Y). Let € > 0. A map f:X — Y is an e-map
if p-diam(f~!(y)) < e for every y € Y. Let M, (X,Y) denote the set of all e-maps in M(X, V).
We shall use the following two basic facts.

Lemma 1. Let X,Y and Z be compact metric spaces. Then composition (f,g) — gof: M(X,Y)x
M(Y, Z) — M(X, Z) is continuous.
This is easily proved using the uniform continuity of maps from Y to Z. One immediate

consequence is that the composition of near homeomorphisms is a near homeomorphism.

Lemma 2. Let (X, p) and (Y, o) be compact metric spaces. For each ¢ > 0, M. (X,Y) is an open
subset of M(X,Y).

Proof. Let f ¢ M. (X,Y). Set § = (1/2) inf {o(f(z), f(2)) : 2,z ¢ X and p(z,z) > e}. Then
§ > 0. Let g ¢ M(X,Y) such that &(f,g) < 5. We assert that g ¢ M (X,Y). If z,z ¢ X and
g(z) = g(z), then o(f(z), f(2)) < o(f(z),9(x)) +o(g(2), f(z)) < 26. This makes p(z, z) < ¢, and

proves our assertion. O

A Theorem of M. Brown (|B], Theorem 4). Suppose X; & X, L2 ... s an inverse se-

quence of compact metric spaces and near homeomorphisms. If X, is its inverse limit, then each

fook :Xoo — X is a near homeomorphism.

Proof. Recall that Xoo = {z € [] Xk : fk(2k41) = 2x foreach k > 1}, and that each foo x : Xoo —
X is simply projection: fook(z) = zx for z € Xoo. Let pi be a metric on Xj such that py-
diam(Xj) < 1/k. Then a metric poo 0n Xo is defined by poo(z, z) = sup{pk(zk, zx) : k > 1} for

This paper is in final form and no version of it will be submitted for publication elsewhere.
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z,z € Xoo. It follows that each foo i :Xoo is a (1/k)-map. Indeed, if z,z eXoo and foork(z) =
foo,k (2), then z; = z; for 1 < j < k; 50 poo(2, 2) = sup{p;(z;,2;): 5 > k} < 1/k.

It suffices to prove that fo,; :Xo — X is a near homeomorphism. To this end, let
denote the closure in 9M(X,, X,) of the set of all maps of the form h o fo, x where & > 1 and
h : Xy — X, is a homeomorphism. Then f,,, € #, and p) restricts to a complete metric on 7.

We shall complete the proof by arguing that 7 has a dense subset consisting of homeomorphisms.

We remark that a map between compact metric spaces is onto, if it is a limit of onto
maps. Hence, each of the near homeomorphisms fi : Xx4; — X is onto. It follows that each

foo,k :Xoo — Xk is onto. Consequently, each element of 7 is onto.

Let e > 0. Set F(e) = FNM.(X,Y). Lemma 2 implies that F(¢) is an open subset of 7. We
shall argue that 7(e) is a dense subset of 7. It suffices to show that if k > land h : X} — X, is a
homeomorphism then the §-neighborhood of ho f x contains an element of 7 (<) for every § > 0.
Choose j > k so that 1/5 < e. Notice that ho fooxk = ho fro---0 f;_1 0 foo, ;. We apply Lemma 1
twice: first to conclude that fyo--- f;_, is a near homeomorphism; and second to see that we can
choose a homeomorphism g : X; — X so close to fio---0 f;_; that 5y (ho fook, hogo foo ;) < 6.

Since fo ; is a (1/7)-map, then hogo foo ; € F(e).

The Baire Category Theorem implies that ¥ = N{F(1/k) :k > 1} is a dense subset of 7.
Since each element of ¥ is one-to-one, and each element of 7 is onto, then X is a dense set of

homeomorphisms in 7. O

Reference

[B]. M. Brown, Some applications of an approximation theorem for inverse limits, Proc.
Amer. Math. Soc. 11 (1960), 478-481.



STRONG HOMOLOGY THEORIES

Friedrich W. Bauer

O. Introduction:

Steenrod-Sitnikov homology theories are defined on the category
of compact metrizable spaces by the Milnor axioms. There are very
satisfactory characterization theorems for ordinary as well as for

generalized Steenrod-Sitnikov homology theories (cf. [2],[91]).

In the meantime there appeared generalizations of Steenrod-
Sitnikov homology theories for more general categories of
topological spaces (cf. [8]). They are called strong homology
theories, mostly because they allowed an extension over some
strong shape categories. In the present paper an axiomatic
characterization of a kind of generalized homology theory, called
strong homology theory (rel. to some category of "good" spaces),
is given. The axioms are the Milnor axioms with a continuity
axiom (definition 1.3.) replacing the clusteraxiom (which is also
some kind of weak continuity). In order to formulate this new
axiom, we need the concept of a chain functor C, being related

to a given homology theory h, . (definition 5.3.)
—*o

This means that there exists an isomorphism between the derived
homology theory H,(C,) and h,. In [1] it is proved that each

homology theory h, admits a chain functor C, which is related

A detailed version of this paper will be submitted for publication

elsewhere.



to h,. Instead of requiring that h, is continuous, one introduces
the concept of a c-continuous chain functor C,. The essence of
c-continuity for a homology theory lies in the state-

ment that each C,, related to h, on the subcategory P (mostly

a category of ANRs or ANEs), allows an extension é* being re-
lated to h, (on the given category of topological spaces where

h, is defined) which is c-continuous (as a chain functor). The
fact that one has to go back to some kind of chain level, i.e.
that one has to work with chains, cycles, boundaries instead of
the original homology classes is not so surprising, recalling
that this is a property of all "strong" constructions: Steenrod-
Sitnikov homology in comparison to Cech homology, strong shape
categories in comparison to ordinary shape and Boardman stabiliza-

tion in comparison to the S-category.

In §1 we set up the axioms of a stronag homology theory and de-
duce a uniqueness theorem (theorem 1.4.). In §2 we derive the
existence of a strong homology theory (theorem 2.1.) from a
construction which is performed in §3. We can only indicate the
details for the case of a generalized homology theory. In order
to accomplish this, =-categories and «-functors are needed and
therefore briefly recorded in §6. In §4 we show, using the re-
sults of §3, that for compact metrizable spaces and P being the
category of ANRs, strong and Steenrod-Sitnikov homology theories
coincide (theorem 4.1.). So it turns out in particular, that the
notion of c-continuity of a homology theory appears as the
appropriate generalization of the clusteraxiom. In §5 we dis-

play the concept of a chain functor, referring to [1] for proofs.



1. Chain continuous homology theories:

Let K © Top be a given full subcategory of the categories of
topological spaces and EZ a category of pairs (X,A) in K,
A c X. In most cases one expects &2 to be the category of all

pairs (X,A), A c X € K.

1.1. Definition: A family of funtors h, = {hn,an, n € Z},

with natural transformations an: hn(X,A) - h (A) is called

n-1

a homology theory on K (or on 52) whenever h, is exact, homotopy

invariant and satisfies a

strong excision axiom: Suppose (X,A), (X/A, 6 *x) € gz, A < X, then

the projection p: (X,A) - (X/A,*) induces an isomorphism

-

Py hn(X,A) ™ hn(X/A,*).

The concept of a strong homology theory depends on a given full
subcategory gzc Togz.We do not assume that g?is a subcategory
of 52.However this can of course be easily achieved by intro-

ducing the full subcategory 5'2c ToE2 which is determined bv K2

and gz.In our main example K is the category of compact metrizable
spaces Com and Ezthe category of all ANR pairs having the

homotopy type of a compact ANR pair. We cannot confine

ourselves merely to compact ANRs because we must have that with
each P € P the function space p! is also contained in P. This
motivates the following agreement (cf.[10] Theorem 1):

In case of 22 we assume throughout that to each (P,Q) € 22 there
exists a homotopy equivalent (P',Q"') € 22 such that

(P'/Q', % €P°.

Before we are giving the definition of a strong homology theory

(rel.gz), let us consider the case K = Com and recall

the clusteraxiom: Let (x,xo) = Ei(xi,xio) be the cluster (or
i=1
strong wedge) of the based spaces Xi = (xi'xio)' then the natural



mapping

oo

Tt Ty (X,xo) - i21h*(Xi,xio)

is an isomorphism.

This is weaker than the requirement of continuity, stating that
. . oy . 2

for each inverse system of pairs (X,A) = {(Xa, Aa),ﬂs} in K

on has

hy (1im(X,A)) ~ lim h, (X ,A ).

There are hamology theories on Com satisfying the clusteraxiom
(the so-called Steenrod-Sitnikov homology theories) which are
not continuous. An ordinary homology theory satisfying the
clusteraxiom is according to a famous result by J.Milnor [9],
characterized by its coefficient group. There is a related re-

sult for generalized homology theories (being the subject of [2]).

So it is reasonable to be looking for a substitute of the
clusteraxiom for categories K larger than Com. Here the cluster-
axiom can be formulated but there is no hope that it gives rise

to a characterization of homology theories.

Let to this end C,: K - ch be chain functor being related to

C s 2
h, (cf. §5, definition 5.3.), (X,A) € K" and let P(X,A) be the

category of pairs in 22 over (X,A): The objects are continuous
2
mappings (g: (X,A) - (P,Q)), (P,Q) € P", and the

morphisms are commutative triangles: r: 97 = 9y

gi= (X,A) - (Pi'Qi)' r: (P-' 1Q1) e (P21Q2)I rg-l = 92-
Let ¢ = {cg} be an assignment g € E(X,A) " € Cn(P,Q)
satisfying

ryc = @

for any morphism r: 94 2 9,



We call C_(X,A) = {c} the set of all such families.

1.2. Definition: A D-functor C,: K » ch is chain-continuous

(c-continuous) rel. gzlwhenever:
1) To each ¢ € C,(X,A), (X,A) € 52 there exists a unique
c € C,(X,A) satisfying

s 9 €P

9yc = © Z(X,n)

g

2) I1f cg € c; (P,Q), for all g € E(X,A)' then we have

o € Cy{X,A),

1.3. Definition: A homology theory h, = ihn,un} on 52 is called

chain-continuous (c-continuous) or a strong homology theory rel.
BZ whenever to each chain functor C, related to h*Ig2 (i.e. there
exists an isomorphism p: h*lgznsH*(g*) on 22), there exists a c-
continuous chain functor é*: K - ch being related to h, (now on 52)
and an inclusion v: C, < é,lg of chain functors, inducing an iso-

morphism of homology theories on Ez.

Remarks and examples:

One is tempted to require merely the existence of a s-continuous
chain functor being related to h,. However this is a condition
which does not give the kind of homology which we expect. Suppose
for example that K = Top and P = category of compact polyhedra,
then singular homology H, (with coefficients in any abelian group
G) has this property: Let C,: K - ch be the functor assigning

to each space X the singular chain complex C,(X) and define
C,(X,A) in the classical way by forming the quotient

C,(X,A) = C,(X)/im i,, i: A © X. Endow C,, C,(X) = C,(X,X)

#l
with the structure of a chain functor in a trivial way

(Cx(X,A) = C,(X);V,p are identities). Then C, is easily seen



to be c-continuous. This provides us also with an example of a

chain functor related to singular homology.

Let on the other hand h, = H,( ;G) on P = finite polyhedra, be
again simplicial homology with coefficients in G. There exists
on Com = K a D-functor SQ* yielding Steenrod-Sitnikov homology

theory SH*( ;G) as related homology theory (cf.[3] for the

+
construction of Sitnikov chains c = {c?, x? 1} and for further

references). Again Sg, turns out to be c-continuous and
SH*( ;G)~H,( ;G) on Ez,But SH* is certainly not isomorphic to

singular homology on Com.

On the other hand wer are able to deduce from definition 1.2.

the following uniqueness tneorem:

2 2 2

1.4. Theorem: Let 1h*, h,: K* - 522 be two c-continuous rel. P
homology  theories on K being isomorphic on Ez,then 1h, and

2h. are isomorphic as homology theories on 52.

x
Proof: Assume for the sake of simplicity that 1h* and zh, are
equal on P and call "h,IP” = h,.
Let C, be a chain-functor related to h,, then we find a c-con-
« related to 1h* together with an

tinuous chain functor 19

embedding

inducing an isomorphism of homology theories on 22. Moreover
there exists a c-continuous chain functor 22* being related

to zh* and an embedding

vy: ‘eI < Zc,ip,



inducing an isomorphism of homology theories on 32. Now we de-

fine X: 1h* - zh* as follows:

Let z € ¢ € 1hn(X,A), z € Zn(1C*(X,A)) be a cycle and

2=

z = {vz(g#(z)J € “Cy(X,A), g €P Due to the c-continuity

(x,n)"
of 22* there exists a z, € Zn(ZC*(X,A)) such that
g#(zz) = vz(g”(z)), allowing us to set

(1) Alz] = [z,].

2

In fact we can do a little more and use this procedure to de-

fine a transformation of chain functors (cf. definition 5.5.)

inducing the above mentioned transformation (1) (cf. proposit-
ion 5.6.) of homology theories.

2 o

There exists an inverse w: Zh* - “h, to Let 39* be a c-

continuous chain functor related to 1'h,,‘, v3:'2g*lg (= 3Q*IE

an embedding, inducing an isomorphism of homology theories on
gz.Then w is constructed in the same way as A (after replacing
¢, by °c,IP and 'c, by °c,). Suppose z, = A, (z) € z_(2c, (x,a)
then w#(zz) is immediately recognized as z: We have

{v3g#(22)} = {v3vzg”(z)} € 3E*(X,A)

3

to which corresponds by c-continuity a zq € gn(X). However

by uniqueness we conclude that z = z3.

So we have

I

=
*

{

e
*

wA



In the same way we find a A': 'h, » “h, such that A'w = 1, so

that A = A' follows. -

2. The existence theorem:

The central step in the proof of the existence of a strong
homology theory h, rel. Bz,extending a given homology theory

on the subcategory gz,is embodied in establishing an assignment
E*Hsg

«r a@ssigning to each chain functor on P a c-continuous

chain functor Sg* on the larger category K' together with an

embedding

S

(1) v: C, c "CLIP

inducing an isomorphism of homology theories on the subcategory

gz. We require the following additional properties of the

assignment C_ » Sg*:
s1) The derived homology H*(SQ*)( ) satisfies a strong excision
axiom (hence H*(SQ*)( ) is a homology theory on K2).

s2) Let 1g*, 29* be two chain functors on P, vy: H*(1g*) ~ H*(‘g*)

a natural isomorphism between the derived homology theories
2

(on P”). Then there exists a natural isomorphism

s s 2

v: By (Tg) m H(%Cc,).

We will deal with the problem of establishing such an assignment
in §3. In order to be able to accomplish this, we have to impose
the following restrictive conditions upon the relationship be-

tween P and K:



1

pl) Let P € P, then the function space PI is contained in P.

p2) Let h.,h.: be two functors satisfying

1°02° Bev,p) * Ex,)
h, (g: (Y,B) » (,Q)): (X,A) ~» (P,Q) and i: (Y,B) < (Y',B')

an inclusion such that for all g € E(Y' B') one has
’

h,(gi) = h,(gi),

then we have

If P is the category of ANR pairs having the homotopy type of a
compact ANR pair and K the category Com of compact metrizable
spaces, then pl1), p2) are both fulfilled: pl1) is well-known
while p2) follows from the following observation: Assume that

s Y,B P P
g9 (y,B) » (P,Q) € =(Y,B)

then we find a commutative triangle of inclusions

and g = g'j, j: (¥,B) < (P,Q,) €P

(Y,B) —X— (v',B")

;| Nk
iy X
(,,0,) € (®'.Q')€p

for suitably choosen k. We have

h;(9) = g'h; (3)

1 h,(3) = hy(ki) = h,(ki) =1 h,(3).

Since 1 is an inclusion, we get

whence

follows.
Suppose now pl), p2) are fulfilled and we have already obtained

an assignment Cx b Sg* such that s1), s2) holds, then we deduce:



12

2.1. Theorem: Let h, = {hn,an} be a homology theory on g?,then
there exists a strong homology theory rel. 22 on 52 such that
h, = SE*'EZ'

Proof: According to theorem 5.4. (or [1] theorem 8.1.) we find

a chain functor C, which is related to h,. We set sh* = H‘(SQ*)
and claim that sh* is a homology theory on EZ:The homotopy axiom
is a consequence of pl) and condition 1) in definition 5.3.,
while the excision follows from s1). The exactness of Sh* is im-
plied by proposition 5.2.. The transformation (1) induces an
isomorphism of homology theories. Let 19* be any chain functor
related to h, on gz,then s2) guarantees the existence of an
isomorphism

1
h, ~ Ht(sg#) B H*(S Cy).

s
So 519* is also related to Sh* thereby revealing itself as a

strong homology theory rel. 22,-

. 2
Remark: Observe that there may exist pairs (P,Q) €K,

Q,P € P, such that Sh*(P,Q) is not isomorphic to an
eventually given h,(P,Q) (which happens if h, has been already

2
defined on all pairs (P,Q) € K, P,Q € P).

3. The chain functor sg*

We are now indicating a construction of the assignment C, » sg*.
Here we assume for the sake of simplicity that h, is an ordinary
homology theory. In a subsequent remark we point out some of

the technical details which are needed for the general case



