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Preface

Ah Love! Could you and I with Him conspire
To grasp this sorry Scheme of things entire!

KHAYYAM

People investigating algebraic groups have studied the same objects in many
different guises. My first goal thus has been to take three different viewpoints
and demonstrate how they offer complementary intuitive insight into the
subject. In Part I we begin with a functorial idea, discussing some familiar
processes for constructing groups. These turn out to be equivalent to the
ring-theoretic objects called Hopf algebras, with which we can then con-
struct new examples. Study of their representations shows that they are
closely related to groups of matrices, and closed sets in matrix space give us
a geometric picture of some of the objects involved.

This interplay of methods continues as we turn to specific results. In Part
I1, a geometric idea (connectedness) and one from classical matrix theory
(Jordan decomposition) blend with the study of separable algebras. In Part
II1, a notion of differential prompted by the theory of Lie groups is used to
prove the absence of nilpotents in certain Hopf algebras. The ring-theoretic
work on faithful flatness in Part IV turns out to give the true explanation for
the behavior of quotient group functors. Finally, the material is connected
with other parts of algebra in Part V, which shows how twisted forms of any
algebraic structure are governed by its automorphism group scheme.

I have tried hard to keep the book introductory. There is no prerequisite
beyond a training in algebra including tensor products and Galois theory.
Some scattered additional results (which most readers may know) are
included in an appendix. The theory over base rings is treated only when it is
no harder than over fields. Background material is generally kept in the
background: affine group schemes appear on the first page and are never far
from the center of attention. Topics from algebra or geometry are explained
as needed, but no attempt is made to treat them fully. Much supplementary

v



vi Preface

information is relegated to the exercises placed after each chapter, some of
which have substantial hints and can be viewed as an extension of the text.

There are also several sections labelled “ Vista,” each pointing out a large
area on which the text there borders. Though non-affine objects are excluded
from the text, for example, there is a heuristic discussion of schemes after the
introduction of Spec A4 with its topology. There was obviously not enough
room for a full classification of semisimple groups, but the results are
sketched at one point where the question naturally arises, and at the end of
the book is a list of works for further reading. Topics like formal groups and
invariant theory, which need (and have) books of their own, are discussed
just enough to indicate some connection between them and what the reader
will have seen here.

It remains only for me to acknowledge some of my many debts in this
area, beginning literally with thanks to the National Science Foundation for
support during some of my work. There is of course no claim that the book
contains anything substantially new, and most of the material can be found
in the work by Demazure and Gabriel. My presentation has also been
influenced by other books and articles, and (in Chapter 17) by mimeo-
graphed notes of M. Artin. But I personally learned much of this subject
from lectures by P. Russell, M. Sweedler, and J. Tate; I have consciously
adopted some of their ideas, and doubtless have reproduced many others.
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THE BASIC SUBJECT
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Affine Group Schemes

1.1 What We Are Talking About

If R is any ring (commutative with 1), the 2 x 2 matrices with entries in R
and determinant 1 form a group SL,(R) under matrix multiplication. This is
a familiar process for constructing a group from a ring. Another such
process is GL, , where GL,(R) is the group of all 2 x 2 matrices with inver-
tible determinant. Similarly we can form SL, and GL, . In particular there is
GL,, denoted by the special symbol G,,; this is the multiplicative group, with
G,.(R) the set of invertible elements of R. It suggests the still simpler example
G,, the additive group: G,(R) is just R itself under addition. Orthogonal
groups are another common type; we can, for instance, get a group by taking
all 2 x 2 matrices M over R satisfying MM* = I. A little less familiar is u,,
the nth roots of unity: if we set p,,(R) = {x € R|x" = 1}, we get a group under
multiplication. All these are examples of affine group schemes.

Another group naturally occurring is the set of all invertible matrices
commuting with a given matrix, say with (,} Y2). But as it stands this is
nonsense, because we don’t know how to multiply elements of a general ring
by \/5 (We can multiply by 4, but that is because 4x is just x + x + x + x.)
To make sense of the condition defining the group, we must specify how
elements of R are to be multiplied by the constants involved. That is, we
must choose some base ring k of constants—here it might be the reals, or at
least Z[\/Z ﬁ]—and assign groups only to k-algebras, rings R with a
specified homomorphism k — R. (If we can take k = Z, this is no restriction.)
A few unexpected possibilities are also now allowed. If for instance k is the
field with p elements (p prime), then the k-algebras are precisely the rings in
which p = 0. Define then a,(R) = {x € R |x? = 0}. Since p = 0 in R, the bino-
mial theorem gives (x + y)’ = x* + y?, and so &,(R) is a group under
addition.
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We can now ask what kind of process is involved in all these examples. To

begin with trivialities, we must have a group G(R) for each k-algebra R. Also,
if @: R — S is an algebra homomorphism, it induces in every case a group
homomorphism G(R)— G(S); if for instance (¢ 5) is in SL,(R), then
o@ o) is in SL,(S), since its determinant is @(a)p(d) — @(b)p(c)
= ¢(ad —- bc) = ¢(1) = 1. If we then take some ¢: S — T, the map induced
by ¥ < ¢ is the composite G(R) — G(S) — G(T). Finally ard most trivially,
the identity map on R induces the identity map on G(R). These elementary
properties are. summed up by saying that G is a functor from k-algebras
to groups.

The crucial additional property of our functors is that the elements in
G(R) are given by finding the solutions in R of some family of polynomial
equations (with coefficients in k). In most of the examples this is obvious; the
elements in SL,(R), for instance, are given by quadruples a, b, ¢, d in R
satisfying the equation ad — bc = 1. Invertibility can te expressed in this
manner because an element uniquely determines its inverse if it has one.
That is, the elements x in G,,(R) correspond precisely to the solutions in R of
the equation xy = 1.

Affine group schemes are exactly the group functors constructed by solu-
tion of equations. But such a definition would be technically awkward, since
quite different collections of equations can have essentially the same solu-
tions. For this reason the official definition is postponed to the next section,
where we translate the condition into something less familiar but more
manageable.

1.2 Representable Functors

Suppose we have some family of polynomial equations over k. We can then
form a “ most general possible ” solution of the equations as follows. Take a
polynomial ring over k, with one indeterminate for each variable in the
equations. Divide by the ideal generated by the relations which the equa-
tions express. Call the quotient algebra 4. From the equation for SL,, for
instance, we get A = k[X,, X,, X5y, X22)/(X 11 X322 — X12 X5, — 1). The
images of the indeterminates in A are now a solution which satisfies only
those conditions which follow formally from the given equations.

Let F(R) be given by the solutions of the equations in R. Any k-algebra
homomorphism ¢: 4 — R will take our “ general ” solution to a solution in
R corresponding to an element of F(R). Since ¢ is determined by where it
sends the indeterminates, we have an injection of Hom,(A4, R) into F(R). But
since the solution is as general as possible, this is actually bijective. Indeed,
given any solution in R, we map the polynomial ring to R sending the
indeterminates to the components of the given solution; since it is a solution,
this homomorphism sends the relations to zero and hence factors through
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the quotient ring A. Thus for this 4 we have a natural correspondence
between F(R) and Hom,(A4, R).

Every k-algebra A arises in this way from some family of equations. To
see this, take any set of generators {x,} for 4, and map the polynomial ring
k[{X.}] onto A4 by sending X, to x,. Choose polynomials {f;} generating the
kernel. (If we have finitely many generators and k noetherian, only finitely
many f; are needed (A.5).) Clearly then {x,} is the “most general possible ”
solution of the equations f = 0. In summary:

Theorem. Let F be a functor from k-algebras to sets. If the elements in F(R)
correspond to solutions in R of some family of equations, there is a k-algebra A
and a natural correspondence betv.een F(R) and Hom,(A, R). The converse
also holds.

Such F are called representable, and one says that A represents F. We can
now officially define an affine group scheme over k as a representable functor
from k-algebras to groups.

Among our examples, G,, is represented by 4 = k[X, Y]/(XY — 1), which
we may sometimes write as k[X, 1/X]. The equation for p, has as general
solution an element indeterminate except for the condition that its nth
power be 1; thus 4 = k[X1/(X" — 1). The functor G,(R) = {x € R|no fur-
ther conditions} is represented just by the polynomial ring k[ X]. As with G, ,
we have GL, represented by A4 = k[X;y, ..., X35, V(X3 X220 — X412 X3y))
To repeat the definition, this means that each (¢ })in GL,(R) corresponds
to a homomorphism 4 — R (namely, X,,—a, ..., X,,—d).

1.3 Natural Maps and Yoneda’s Lemma

There are natural maps from some of our groups to others. A good example
is det: GL, —» G,,. Here for each R the determinant gives a map from
GL,(R) to G,(R), and it is natural in the sense that for any ¢: R — § the
diagram

GL,(R) G.(R)
GL,(S) Gn(S)

commutes (i.e., gives the same result either way around). The naturality is
obvious, since there is an explicit formula for det involving just polynomials
in the matrix entries. The next result (which is true for representable functors
on any category) shows that natural maps can arise only from such
formulas.
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Theorem (Yoneda’s Lemma). Let E and F be (set-valued) functors represented
by k-algebras A and B. The natural maps E — F correspond to k-algebra
homomorphisms B — A.

PROOF. Let ¢: B — A be given. An element in E(R) corresponds to a homo-
morphism 4 — R, and the composition B - A — R then defines an element
in F(R). This clearly gives a natural map E — F.

Conversely, let ®: E — F be a natural map. Inside E(A4) is our “most
general possible” solution, corresponding to the identity map id,: 4 — A.
Applying ® to it, we get an element of F(A), that is, a homomorphism
@: B— A. Since any element in any E(R) comes from a homomorphism
A — R, and

E(A) E(R)
F(A) F(R)

commutes, it is easy to see that ® is precisely the map defined from ¢ in the
first step. O

To elucidate the argument, we work it through for the determinant. In
A=kXyy, ..., X35, /(X1 X3; — X2 X3,)] we compute det of the “ most
general possible” solution (¥}! !2), getting X, X,, — X;, X,,. This, an
invertible element of 4, determines a homomorphism from B = k[ X, 1/X]to
A. Thus det: GL, — G,, corresponds to the homomorphism B — A4 sending
Xto X, X,,— X, X,,. All this is basically trivial, and only the reversal of
direction needs to be noticed: E — F gives 4 < B.

Suppose now also that ®@: E — F is a natural correspondence, i.e. is bijec-
tive for all R. Then @~ ': F — E is defined and natural. It therefore corre-
sponds to a homomorphism ¢: 4 — B. In the theorem composites obviously
correspond to composites, so ¢ -y: A—-B— A corresponds to
id=®""'-®: E-F - E. Hence ¢ > { must be id,. Similarly y © ¢ = idp.
Thus ¢ is ¢~ ', and ¢ is an isomorphism.

Corollary. The map E— F is a natural correspondence iff B— A is an
isomorphis».

This shows that the problem mentioned at the end of (1.1) has been
overcome. Unlike specific families of equations, two representing algebras
cannot give essentially the same functor unless they themselves are essen-
tially the same.
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1.4 Hopf Algebras

Our definition of affine group schemes is of mixed nature: we have an
algebra A together with group structure on the corresponding functor.
Using the Yoneda lemma we can turn that structure into something involv-
ing A.

We will need two small facts about representability. The first is obvious:
the functor E assigning just one point to every k-algebra R is represented by
k itself. Second, suppose that E and F are represented by A and B; then the
product

(E x F)(R) = {Ce.f>|e € E(R), f€ F(R)}

is represented by A ®, B. Indeed, this merely says that homomorphisms
A® B — R correspond to pairs of homomorphisms 4, B— R, which is a
familiar property of tensor products. We can even generalize slightly. Sup-
pose we have some G represented by C and natural maps E—~ G, F -G
corresponding to C — 4, C — B. Then the fiber product

(E x g F)(R) = {{e, f>|e and f have same image in G(R)}

is represented by A ®¢ B.
Now, what is a group? It is a set I" together with maps

mult: ' x I'->T
unit: {e}->T
imv: I'-T

such that the following diagrams commute:

id x mult

I'xI'xT F'xI
J mult x id Jmul( (associativity),
T % I mult r
{e} x T S rxT
12 l ™t (left unit),
r = r
and
(inv, id)
—  xI
J l —" (left inverse).

{e} unit F



