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Preface

This book appears perhaps at the wrong moment, since it goes
against the mathematical tide, which nowadays seems to be mov-
ing away from abstraction and conceptualization towards concrete-
ness and specialization. Nevertheless, we have decided to publish it,
rather than wait for the turn of the tide. Our purpose is to explain
infinitesimals and infinitely large integers, as they were used before
their elimination by the set-theoretic trend in mathematics. Our ex-
planation doesn’t go against this trend, but tries to give a consistent
reinterpretation of infinitesimals in a set-theoretic context, through
the use of sheaf theory. :

A set-theoretic interpretation of infinitesimals appears to have
been provided already by A. Robinson and his school, with the
creation of non-standard analysis, and the reader may well won-
der whether we are reformulating non-standard analysis in terms of
sheaves. However, one should notice that two kinds of infinitesimals
were used by geometers like S. Lie and E. Cartan, namely invertible
infinitesimals and nilpotent ones. Non-standard analysis only takes
the invertible ones into account, and the claims to the effect that
non-standard analysis provides an axiomatization of the notion of _
infinitesimal is therefore incorrect. This is particularly astonishing
when one realizes that notions like differential form, curvature, etc.,
were originally based upon the notion of nilpotent infinitesimal.

The use of sheaves to model nilpotent infinitesimals is not new.
In fact, nilpotent infinitesimals are used in Grothendieck’s theory
of schemes to handle infinitesimal structures in the context of alge-
braic geometry. But the theory of schemes lacks an adequate lan-
guage to deal directly with nilpotent infinitesimals, in the way that
non-standard analysis provides such a language (and semantics) for
invertible infinitesimals. '

It was the discovery of Lawvere that a Grothendieck topos may be
viewed as a universe of “variable” sets, and that consequently set-
theoretic language can be interpreted directly in a topos. Therefore,
working with the topos built from schemes, rather than with the
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schemes themselves, one obtains a model for this generalized set-
theory with nilpotent infinitesimals.

Lawvere also discovered that by considering smooth versions of the
toposes occurring in algebraic geometry (toposes built from rings of
smooth functions, rather than polynomials) one obtains models for
ordinary differential geometry. In these models, infinitesimal struc-
tures of the kind used by Cartan, for instance, can be interpreted
directly, and in this context Cartan’s arguments are literally valid.

These ideas, dating from 1967, remained unpublished, and were
taken up only in the mid-seventies. This resulted in two main lines
of development. On the one hand, there was the purely axiomatic
development of differential geometry with nilpotent infinitesimals,
or “synthetic differential geometry”. On the other hand, smooth
toposes were constructed, which showed not only the consistency of
the axiomatic approach, but also provided a direct connection with
the classical theory of manifolds.

The emphasis of our book is on this second line of development.
Our main concern has been to show that synthetic differential ge-
ometry has a clear and direct relation to the classical theory. This
relation is based on the fact that, unlike non-standard analysis, syn-
thetic differential geometry has natural models built from smooth
functions and their ideals. The main novelty of our approach, with
regard to both non-standard analysis and synthetic differential ge-
ometry, is precisely the construction of such mathematically natural
models containing nilpotent as well as invertible infinitesimals.

We started our collaboration at the end of 1982, when Reyes was
spending his sabbatical year at the University of Utrecht. The actual
writing of the book took place between the fall of 1983 and the
spring of 1985. During this period, the authors were able to work in
close contact. Besides several shorter visits, Reyes spent the summer
of 1984 at the University of Amsterdam, and Moerdijk spent the
academic year 1984-85 at McGill University.

We gave courses and seminars on parts of the contents of the
book at the University of Utrecht in 82-83, at the University of
Montreal in 83-84, and at McGill University in 84-85. Moreover,
between 1983 and 1986, the material was presented in lectures at
Aarhus during the workshop on categorical methods in geometry, at
Bogota during the seminario-taller de categorias, and at the univer-
sities of Paris, Lille, Cambridge, Columbia, Rome, Milano, Parma,
Warsaw, Carnegie-Melion, Maryland, Campinas, Sad Paulo, La Ri-
oja (Logrono), Zaragoza and Santiago de Compostela. We would like
to thank our colleagues at these institutions who made these visits
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possible, for their hospitality and support.

We gratefully acknowledge the almost continuous financial sup-
port by the Netherlands Organization for Pure Research (ZWO), le
Conseil de recherches en sciences naturelles et en génie du Canada,
and le Ministére de I’éducation du Gouvernement du Québec. In
particular, Reyes’ visits to Utrecht and Amsterdam were partly sup-
ported by ZWO, and we are grateful to Dirk and Dook van Dalen,
and Anne Troelstra for making these visits possible and pleasant.
Moerdijk’s year in Montréal was Ridde possible by an invitation of
the Groupe interuniversitaire en ‘etddes catégoriques, and we would
like to express our thanks to a\)h ; members of the Groupe for
creating such pleasant working coh itibns. :

During these years, those who have helped us are too numerous
to be mentioned here individually. But we are specially indebted
to Dana Scott. It was he who suggested the possibility of writing a
monograph on models of synthetic differcntial geometry, who gave
us advice on the organization of the book, presented it to Springer-
Verlag, and provided the facilities to prepare the final text. A special
word of thanks also goes to Bill Lawvere, without whose constant
support we would never have been able to write this book, and to
Ngo Van Qué, who had the patience to explaic some analysis and dif-
ferential geometry to us ignorant logicians. Moreover, we would like
to thank Oscar Bruno, Marta Bunge, Eduardo Dubuc, Iole Druck,
Luis Espafiol, Alfred Frolicher, André Joyal, Anders Kock, Michael
Makkai, Colin McLarty, Peter Michor, Maria del Carmen M{nguez,
Wil van Est, and Gavin Wraith for valuable conversations and com-
ments on parts of the manuscript.

We would also like to thank Yvonne Veorn and Lise Perreanlt,
who have typed endless earlier versions, Roberto Minio for valu-
able advice on matters connected with the editing of this book, and
Staci Quackenbush, who prepared this final text that you have before
you. :

Finaily, the second author probably would have not survived this
experience, had it not been for the encouragement of Marie. Not
only did she give advice on a variety of matiers connected with the
book, but her unreasonabie conviction that this project could be
brought to an end, proved to be contagious.

Montréal, I.M., G.E.R.
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Introduction

The theory of menifolds goes back to Riemann’s lecture “Ueber die
Hypothesen, weiche der Geometrie zu Grunde liegen” (“On the hy-
potheses which lie at the foundations of geometry”), which was deliv-
ered on June 10, 1854, to the faculty of thie University of Gottingen.
Since there were members of the faculty who knew little mathemat-
ics, Riemann chose a rather informal style of exposition to make his
lecture intelligible. In part one of this lecture; he set himself the task
of “constructing the concept of a multiply extended quantity from
general notions of quantity”, a task he regards as being of a “philo-
sophical nature, where difficulties lie more in the concepts than in
the construction ....” : iH a0 RIPI §

On the basis of this lecture alone, it seems nearly impossible to
determine what form such a construction should take, and hence
we cannot know how far Riemann had advanced towards the ac-
complishment of his task. For a modern reader, however, it is very
tempting to regard his efforte as an endeavor to define a “manifold”,
and it is precisely the clarification of Riemann’s ideas, as understood
by his successors, which led gradually to the notions of manifold and
Riemannian space as we know them today.

In this context it is important to notice that Riemann himself
pointed out in his lecture the existence of “manifolds in which the
fixing of positions requires not a finite number, bu$ either an infi-
nite sequence or a continuous manifold of numerical measurements.
Such & manifold form, for instance, the possibilities for a function
in a given region, the possible shapes of a golid figure, etc.” This
quotation reveals already a first limitation of the theory of manifolds
in its modern guise: i

The category M of C*° -manifolds and C* -maps between them s
aot cartesian closed. In particulcr, the space of C*° . -mape between
two manifolds is not necessarily o manifold.

The need for a cartesian closed category of smooth spaces and -
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smooth maps has repeatedly been pointed out in connection to physics.
We mention the following considerations, due to Lawvere (1980):
The motion of a certain body B (for example, a 0-dimensional sys-
tem of particles, a 1-dimensional elastic cord, a 2-dimensional flexible
shell, a 3-dimensional solid) is often represented by a map

¢TxB— R,

where T is (the 1-dimensional space to measure) time, and E is the
ordinary flat 3-dimensional space. Thus, the motion may be thought
of as assigning to a couple (time, particle of B) the corresponding
place in E during the motion.
For other purposes, however, it is useful to consider motion as a
map ‘
7:B— ET

: which assigﬁs to each particle of B its path through E, where ET
is the space of (smooth) paths. The action of the vector space V of
translations of the flat space E allows us to define a map

('):E’T—*VT

using Néwton’s notation. By composing with § we obtain a new map
which, in turn, gives us (by adjunction) the velocity map

v.TXB—-V

of the motion q.
Still another way of considering motion is necessary for some pur-
poses, namely as a map
3T E®
which assigns to a time the (smooth) placement of the body in space

at that time. Letting u be the mass distribution of B, we obtain a
map (by convexity of E)

_ ﬁ/;()dp:EBqE,

which assigns to each placement of B the corresponding position of
the ce;& of mass. Once again, composing this map with g, we
obtain a new map

T-—FE

giving for each time the center of mass of the systems in motion at
that time. : ‘
The varicus connections between these ways of regarding motion
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should be expressed precisely by the adjunctions available from the
cartesian closed structure of a category of smooth spaces and smooth
maps. In the words of Lawvere: “The E,B,T transforms (i.e., the .
adjunctions) are more (at least as) fundamental as any particular
determination of the objects as “consisting” of points, opens, paths,
etc., and indeed any such determination which does not admit these
transformations is ultimately of only specialized interest”.

The second limitation of the theory of manifolds may briefly be
formulated as follows:

The category M of C® -manifolds lacks finste snverse limits. In
particular, pullbacks of manifolds are generally not manifolds.

This implies that curves and algebraic varieties, of the kind al-
ready studied by Descartes, are not manifolds. The trouble here is
that algebraic varieties may have (and usually do have) singulari-
ties, whereas manifolds cannot. As a consequence of this exclusion,
one finds that, despite many interactions, differential geometry and
algebraic geometry follow their separate ways, and the methods of
one cannot, without violence, be applied to the other.

A limitation of the theory of manifolds of a different nature is:

- The absence of a convenient languege to deal explicitly and diréctly
with structures in the “infinitely small”.

We mention here a rather technical example, a theorem due to
Ambrose, Palais and Singer, which will be discussed in Chapter V.
This theorem asserts the equivalence between symmetric connections
and sprays on a manifold. Connections and sprays are operations
on infinitesimal structures, and one would like to show their equiv-
alence directly. However, an appropriate language to make a direct
comparison is lacking, and one first has to transform these “infinites-
imal” structures into “local” ones by integration. The comparison
is then possible, since it is at this “local” level that the language of
the classical theory of manifolds is adequate. Finally, one returns to
the original “infinitesimal” structures by some limit process, inverse
to integration.

This detour should not be necessary if one had a convenient lan-
guage for infinitesimals at one’s disposal.

Despite the absence of such a language for infinitesimals, geome-
ters like G. Darboux, S. Lie and E. Cartan often used “synthetic”
reasoning in their work. We shall illustrate this style of reasoning
with an example taken from E. Cartan (1928). After stating the for-
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mulas of Green, Stokes and Ostrogradsky, Cartan (loc. cit, p. 207)
continues: “The operation which allows us to construct such formu-
las may be described in a very simple way. Let us first consider the
case of a simple integral @(d) [where @(d) is a differential 1-form,
and d is a symbol of differentiation] taken along a closed circuit (C).
Let (S) be a (part of a) surface limited by (C), in n-dimensional
space. Let us introduce in (S) two symbols of differentiation dy, d;
which are interchangeable [i.e., they commute], and let us divide (S)
into the corresponding network of infinitely small parallelograms. If
m is the vertex of one of these parallelograms (cf. figure)

mg

e

and if m; and my are the vertices obtained from the operations d;
and d3, we have

my ma
/ o= U(d]), / W= ‘(il-(dz)
m m
mg m3 2
/ &= / W+ d; / W= U(dz) 4 dla)—(dz)
my m m ;

jf;‘s @ = w(dy) + dz@(dy); |

therefore the integral @ taken along the boundary of the paralielo-
gram is equal to 'cﬁ(di) b o (D'(dz) o dﬂﬁ(dg)) - (D'(dl) 5 dzﬁ(dl)) -
w(dz) = d1@(ds) ~ d4w(d;). The expression in the second member is
nothing else but the bilinear covariant of & [i.e., in modern language,
the exterior derivative]. For instance, if Pdz is a term of @,

: dl (szz) Hd dg(Pdlz)' = dlpdg:t - ngdlz e (dez)
[in modern notation: dP Adz]. We obtain, thus, the Stokes’ formula

3 ¥
/sz+Qdy+ Rdz://dez+dey+dez,
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which may be extended to any number of variables”.

Let us remark that this way of defining the exterior derivative by
circulation along an infinitesimal paralielogram, obtaining Stokes’
theorem as a byproduct, is quite popular (and rightly so!) among
physicists and engineers, who keep on using this kind of reasoning.

The “symbol of differentiation” occurring in this quotation may
seem rather mysterious. Let us quote again from Cartan (loc. cit,
p.- 179), where the sense of this notion is elucidated for Riemann
spaces: “Let us consider two different systems of differentiation d and
§. The quantities du’ may be considered as products of an “infinitely
small” constant parameter a by functions £(u!,...u") (which are
either determined or left undetermined):

du' = at*(ul,...,u").

Similarly, :
§u' = Bn'(ul, ..., u").
Let m be an arbitrary point with coordinates (u') of the Riemann
space; let m; be the point with coordinates {(u* + duf) and mj the
point with coordinates (u® + éu*). The vector mm; defines an ele-
mentary displacement d; the vector mm; an elementary displacement
6"

Following this explanation, we shall interpret these notions as
follows (see Chapter IV): A symbol of differentiation {on S) is a
map d: D — S, where D is the set of first-order infinitesimals, i.e.
D = {h € R|A?* = 0}. Two such symbols d, § commute if there
is some v4: D x D — S such that 4(h,0) = d(h) for all A € D and
4(0,k) = 6(h) for all h € D. A differential 1-form (on S) is a map
w:8P x D — R. Cartan defines the exterior derivative of w, ie., a
differential 2-form dw: SP*P x D x D — R via the circulation along
the infinitisimal parallelogram (7, A3, hs) € SP*P x D x D. In fact,
(v, h1, hz) may be pictured as follows:

D 5
< ovat £ my ms
_irh‘ !—__.l—l_., 7 Ly
i
D
. % . i S m my

with m = 4(0,0), my = 4(h1,0), me = 4(0,hs2), ms = y(h1,h2)..
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The circulation is simply

my ms ms ma
/ @+ W= w— / w
m my ma m
where these infinitesimal integrals are defined by

/;';mx W w([h 34 7(": 0)]’ hl) = w(dh hl)

[0 = wllh s 20, R, ha) = wlda, )

msw = w([h = 8(h, h)""z)"

mi
ms
/ w = w([h v y(hy1, ha), k).
ma

To continue Cartan’s argument, we make the blunt assumption
(which is a consequence of the so-called Kock-Lawvere axiom, see
11.2.4) that any function f:D — R may be developed in Taylor
series to obtain f(h) = f(0) + hf'(0).

By applying this formula to f(h;) = w([h = 5(hy, k)], hs), we
obtain [®w = [™ w + ky - f'(0), which is Cartan’s formula, but
for the notation. To complete the definition of the exterior deriva-
tive, we let dw(y,h1,hs) = circulation of w along (v, k1, hz). Using
infinitesimal integrals, we may thus write, letting 8(y, Ay, hs) be the
circuit (C), \

/ dw = w
{7.h1,h2) 3{~,h1,h3)

which is the infinitesimal version of Stokes’ theorem. From here, as
shown in detail in Chapter IV, we can derive the usual, finite version
of Stokes’ theorem. How this theorem relates to the classical one will
be explained later on in this introduction {and more extensively in
Chapter IV).

Rather than multiplying the examples of this kind, we now give
a different one coming from theoretical physics. Although several
“mathematical” definitions of “generalized measures” have been given
(the theory of distributions, operator calculus, etc.), it seems fair to
say that physicists keep on thinking of a distribution as the operation
of integrating against a “real function”, be it with rather pathologi-
cal properties. A typical example is the function & corresponding to
the Dirac distribution. In Schiff (1968), p.56, the properties of the §
function are described as follows:

“Thus the limit of this function (e.g. ﬂ:‘:ff) as g — oo has
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all the properties of the § function: it becomes infinitely large at
z = 0, it has unit integral, and the infinitely rapid oscillations as |z|
increases mean that the entire contribution to an integral containing
this function comes from the infinitesimal neighborhood of z = 0.”

We wish to point out the following features of these arguments.
First of all, in the first argument no mention is made of atlases and
coordinates, although manifolds are mentioned; in other words, this
argument is intrinsic, and proceeds by directly manipulating geo-
metric objects, namely differential forms and infinitesimal parallelo-
grams. Secondly, infinitesimals are freely used, making the notion of
limit unnecessary (for the particular purpose at hand). Notice, how-
ever, that in the first argument the infinitesimals must be nilpotent.
Obviously, such infiritesimals will not do to define the § function-for
this one needs the notion of invertible infinitesimnals, and correspond-
ingly, of snfinitely large reals, to make the integral of § add up to
; £3

As a final illustration of the need for an adequate iangunge to deal
with infinitesimal structures, we would like to mention the follow-
ing quotation taken from the preface to S. Lie’s article (1876) (a!se
quoted in Kock (1981)): “The reason why I have postponed for
long these investigations, which are basic to my other work in ﬂ'-r--
field, is essentially the following. I found these theories originally oy
synthetic considerations. But I soon realized that, as appropriate
[zweckmiissig] the synthetic method is for discovery, as difficult it is
to give a clear exposition on synthetic investigations, which deal with
objects that till now have almost exclusively been considered analyt-
ically. After long vacillations, I have decided to use a half-synthetic,
half-analytic form. I hope my work will serve to bring justification
to the synthetic method besides the analytic one.”

In this book, we will describe an approach to analysis and dif-
ferential geometry, smooth infinitesimal analysis, which avoids the
three limitations of the category of manifolds discussed above. The
basic ideas of this approach are mainly due to F. W. Lawvere, and
can be seen to originate from the work of C. Ehresmann, A. Weil,
and A. Grothendieck. The aim is to construct categories of spaces,
the so-called smooth toposes, which contain the category of mani-
folds (or more precisely, there is a full and faithful embedding of
the category of C®-manifolds into each of these smooth toposes).
Moreover, in each of these smooth toposes inverse limits of spaces
and function spaces can be adequately constructed, in particular
infinitesimal spaces like the ones needed in (our interpretation of)
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Cartan’s arguments, e.g., the space D of first-order infinitesimals.

The construction of these smooth toposes proceeds in two steps:
one first embeds the category of manifolds M in the category L of
“loci”, a category of formal varieties. This new category has finite
inverse limits and contains infinitesimal spaces, but function spaces
can generally not be constructed in L. As a second step, therefore,
L is endowed with a natural Grothendieck topology, and the result-
ing topos Sh(L) of sheaves on L for this topology is the required
extension of L in which function spaces with good properties can be
constructed,

M c L ¢ Sh(L).

This construction and variants thereof will be discussed in detail in
this book, and at this stage we just sketch the idea of the extension
of the category M of manifolds to the category L of loci.

To motivate the definitions, let us recall the functorial approach to
algebraic geometry, as exposed in Demazure & Gabriel (1970), for
example. An (algebraic) locus such as S! = {(z,y)|z? + y* = 1}
is identified with a functor S':C — Sets, where C is the cat-
. egory of commutative rings; S! associates with a ring A the set
SY(A) = {(a,b) € A%|a® + b? = 1}, and with a ring homomorphism
A -5 B the obvious restriction SY(f):S'(A) — S'(B), sending
(a,b) to (f(a), f(b)). As morphisms between one such locus, i.e. a
functor C — Seis, and another, one takes simply the natural trans-
formations. Besides the usual “spaces” such as the sphere S, the
line R given by R(A) = the underlying set of A, etc., one also has
“infinitesimal loci”. For example, the locus D = {z € R|z? = 0},
ie. D(A) = {a € Aja® = 0}, plays the rdle of the space of first-order
infinitesimals. In fact, the category of algebraic loci is simply the
. dual (or opposite) of the category of finitely generated commutative
rings: a ring A = Z[Xy, ...,Xn)/(p1, .., P&) corresponds to the locus
€(A) = {z € R"|pi(z) = .. = p(z) = 0}, i.e. to the functor

B~ Hom(A, B) & {b € B"|p1(b) = .. = pe(b) = 0}.

In our case, the category of commutative rings is replaced by that
of C®.rings. A C®-ring is a ring A in which we can interpret every
C®-function R™ — R as an operation A™ — A (and not just
polynomial functions, as in the case of commutative rings), and a
map between two such C®-rings is a ring homomorphism which
preserves this additional structure, a “C™-homomorphism”. The
category L is simply the dual of the category of finitely generated
C®.rings, and for a given such C*™-ring A, the corresponding locus-

-
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an object of -is denoted by £(A).

Any manifold M is represented as an object of L via the C°°-rmg
of smooth functions on M, C®°(M). Furthermore, we have infinites-
imal spaces such as D = £(C®(R)/(z?)), and A = £{C§°(R)) where
C§°(R) is the C*®-ring of germs at 0 of smooth functions on R, which
will play the role of first-order infinitesimals and infinitesimale re-
spectively, as will be shown later on in detail. An important space of
infinitesimals is the locus I = £(C§°(R — {0}), the ring of restrictions
to R — {0} of the germs at O; I plays the role of the set of invert-
sble infinitesimals. We also have such loci as £(C*°(N)/K), where
C®(N) = RN is the ring of smooth functions on the natural num-
bers, and K is the ideal of eventually vanishing functions; this locus
will act as the set of snfinitely large natural numbers.

When a smooth topos like Sh(IL) is described in this way, namely as
a category of “spaces” which extends the usual category of manifolds,
its close relation to the classical theory is clear. But the structure
of these spaces, being sheaves on L, is rather complicated, and the
synthetic arguments described earlier can only be interpreted in a
very round-about way.

However, and this is a crucial aspect of our whole approach, a
smooth topos can also be regarded as a “universe of sets”, inside
which one can describe constructions and give arguments in a purely
set-theoretical language, so that much of the complexity of the struc-
tures used is no longer explicitly there. There is one limitation, how-
ever, to the use of set-theoretical arguments and constructions when
applied in this new context: they should be constructive, and no
use of the axiom of choice or the law of the excluded middle can be
made.

Regarding the topos Sh(L) in this way, synthetic arguments like
Cartan’s can be carried out almost word by word in Sh(L). Further-
more, this point of view enables us to apply many of the classical
definitions, constructions and (constructive!) proofs literally to thie
more general category of spaces, without ever making explicit that
we are really dealing, not just with sets of potnts, but with sheaves
on L.

To give a simple example, Cartan’s argument for Stokes’ theorem
is constructively valid, and-working in Sh(LL) as a universe of sets—it
applies to an arbitrary “set”, i.e., to any object of Sh(L). When
one now “decodes” this set-theoretic way of looking at the sheaves
on L, one obtains the usual form of Stokes’ theorem for manifolds,
as we will explain in detail in Chapter IV. (In fact, one obtains a
more general result, including a form of Stokes’ theorem for spaces



