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AUTHOR’S NOTE

The aim of this book is to acquaint the reader with the
fundamentals of Lobachevsky’s non-Euclidean geometry.

The famous Russian mathematician N. I. Lobachevsky was an
outstanding thinker, to whom is credited one of the greatest
mathematical discoveries, the construction of an original geometric
system distinct from Euclid’s geometry. The reader will find
a brief biography of N. I. Lobachevsky in Sec. 1.

Euclidean and Lobachevskian geometries have much in common,
differing only in their definitions, theorems and formulas as
regards the parallel-postulate. To clarify the reasons for these
differences we must consider how the basic geometric concepts
originated and developed, which is done in Sec. 2.

Apart from a knowledge of school plane geometry and trigono-
metry reading our pamphlet calls for a knowledge of the
transformation known as inversion, the most important features
of which are reviewed in Sec. 3. We hope that the reader will
be able to grasp its principles with profit to himself and
without great difficulty, since it, and Sec. 10, play very important,
though ancillary, role in our exposition.



First published 1976
Second printing 1982

Ha awuzauiickom A3vike

© English translation, Mir Publishers, 1982



Section 1. A Brief Essay on the Life and Work
of N. I. Lobachevsky

Nikolai Ivanovich Lobachevsky was born on December 1,
1792 (November 20 by the old Julian style), the son of an
ill-paid civil servant. Early in their life Nikolai Lobachevsky
and his two brothers were left in the sole care of their
mother, an energetic and clever woman, who, despite her extremely
meager means, sent them all to the Kazan grammar school.

Lobachevsky , studied there from 1802 to 1807, at Kazan
University from 1807 to 1811. Possessing brilliant mathematical
talents he successfully completed the course of studies and after
graduating remained at the University to work for a professor-
ship, which was conferred on him in 1816.

Lobachevsky’s teaching left a deep impress on the memories
of his students. His lectures were noted for their lucidity and
completeness of their exposition. His knowledge of various branches
of science was extensive and many-sided, which enabled him to
lecture not only on mathematical subjects but also on mechanics,
physics, astronomy, geodesy, and topography.

Lobachevsky was elected rector of Kazan University in 1827
and occupied this post for nearly twenty years. Being a talented
and energetic administrator, with a good insight into the aims of
higher education, he succeeded in making Kazan University a model
higher educational institution of his time. On his initiative the
university began publishing Scientific Proceedings. Under him con-
struction of the university’s buildings was broadly developed,
an astronomical observatory founded.

But it was his scientific work that brought Lobachevsky
world fame. He immortalized his name by creating the non-
Euclidean geometry now called after him !.

On 23 (11) February, 1826 Lobachevsky read a paper at
a meeting of the Department of Physico-mathematical Sciences
of Kazan University in which he first communicated the non-
Euclidean geometry discovered by him. The first published presen-
tation of its principles was his memoirs On the Fundamentals
of Geometry published in 1829 and 1830 in the journal Kazan
Herald.

Most of Lobachevsky’s contemporaries did not understand his
discovery, and his works on geometry had a hostile reception

1 Its other name — hyperbolic geometry —is due to the fact that in
it a straight line like a hyperbola in Euclidean geometry has two
infinitely removed points (see Sec. 4).



both in Russia and abroad. His ideas were too daring and
departed too far from the notions that then dominated science
so that much time had to pass before they won general recognition,
which came only after his death.

Lobachevsky was not dissuaded of the correctness of his
conclusions by his critics’ attacks and continued, with his native
energy and determination, to work on the development of his
geometric system, publishing a number of works devoted to
problems of non-Euclidean geometry. The last of them, com-
pleted by Lobachevsky not long before his death, had to be
dictated as he himself was unable to write any more because
of the blindness that affected him in his last years.

Lobachevsky’s scientific activity was not restricted to investigation
in geometry: he also made several fundamental contributions
to algebra and calculus. The method of approximate solution
.of algebraic equations he worked out is very elegant and efficient.

Lobachevsky’s philosophical views had a clearly expressed
materialist slant. He considered experiment and practice the most
reliable means of testing theoretical conclusions. He demanded
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teaching of mathematics such as would bring out the real
phenomena behind mathematical operations.
In 1846 Lobachevsky was relieved of his duties at the University
and appointed assistanf trustee of the Kazan educational district.
He died on 24 (12) February, 1856. In 1896 a monument
was erected in Kazan to honour his memory !.

Section 2. On the Origin of Axioms and Their Role
in Geometry

To elucidate the role of axioms let us trace the general
outline of the most important steps in the development of
geometry from ancient times.

The birthplace of geometry was the countries of the Ancient
East where important practical rules for measuring angles, areas
of certain figures, and the volumes of the simplest solids were
worked out thousands of years ago to meet the needs of land
mensuration, architecture and astronomy. These rules were developed
empirically (from experience) and appear to have been passed on
by word of mouth: in the oldest texts that have come down
to us we often come across applications of geometric rules but
find no attempts to formulate them.

In the course of time the circle of the objects to which the
geometric knowledge acquired was applied broadened, and a need
arose to formulate the rules, in the most general form possible,
which brought about a transition in geometry from concrete
notions to abstract concepts. For example, the rule developed
for measuring the area of a rectangular plot of land proved
applicable to measuring the area of a ‘carpet, the surface of
a wall, etc., and as a result an abstract concept, a rectangle,
arose.

So a system of knowledge was formed which came to be
termed geometry. At its early stage it was an empirical science,
i.e. one in which all the results were derived directly from
experience.

' The reader can find more details on Lobachevsky s life in

V. F. Kagan, N. Lobachevsky and His Contribution to the World Science
by the Foreign Languages Publishing House, Moscow, 1957;

P. A. Shirokov and V. F. Kagan, Structure of Non-Euclidean Geometry.
Issue 1 of the series Lobachevsky’s Geometry and Development of Its
Ideas, Moscow-Leningrad, 1950 (in Russian). One chapter of this book
contains a brief and skilful presentation of Lobachevskian geometry
understandable to a wide range of readers.
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The development of geometry took a new direction when it
was noticed that some of its propositions did not need empirical
substantiation since they could be deduced from its other pro-
positions as conclusions following from the laws of logic. The
propositions of geometry were now divided into two classes:
those established empirically (later called axioms) and those provable
logically on the basis of axioms (theorems).

Because logical substantiation, which does not require either
special instruments or numerous tiresome measurements, is
technically much simpler than the empirical approach, the scien-
tists of the antiquity were naturally faced with the problem of
reducing to a minimum the number of propositions of the
first type (axioms) so as to lighten the geometer’s job by shifting
its main load to the sphere of logical reasoning. This goal
proved attainable since geometry was abstracted from all properties
of bodies except extension, a most essential one but so simple that
all possible geometric relationships can be deduced by the laws of
logic from a limited number of premises or axioms.

Thus geometry was converted from an empirical science into
a deductive one! with its present-day axiomatic presentation.

The earliest book that has come down to us with a sys-
tematic exposition of the main propositions of geometry was
Euclid’s Elements written around 300 B.C. This work has the
following structure: after definitions and axioms come the proofs
of theorems and solutions of problems; each new theorem being
proved on the basis of axioms and previously proved theorems.
The axioms are not proved but simply stated.

For two thousand years Euclid’s Elements enjoyed undisputed
authority among scholars. But one point in it did not seem
quite justified. That was the parallel-postulate stated as follows:

If a straight line falling on two straight lines makes the two
interior angles on the same side of it taken together less than two
right angles, the two straight lines, if produced indefinitely, meet
on that side on which are the angles together less than two
right angles?2.

1 A deduction is the deriving of a conclusion. A science is called deductive
when its new statements are deduced from preceding ones by way of logic.

2 In school textbooks Euclid's parallel-postulate is replaced by the
following equivalent proposition: Only one straight line can be drawn parallel
to a given straight line through a point not on this line.

Two axioms of Euclidean or any other geometry are considered
equivalent when the same conclusions follow from both, provided all
the other axioms of the geometry remain vahd
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The validity of Euclid’s axiom of parallels aroused no doubts.
The uncertainty regarding it lay in something else: was it
justifiable to place it among the axioms? could it not be proved
from the axioms of his Elements and so transferred to the
category of a theorem?

Initially the attempts to prove the parallel-postulate reflected
the tendency mentioned above to reduce the number of geometric
propositions requiring empirical substantiation. In the course of
time the situation has changed: the empirical origin of the axioms
was forgotten and they came to be treated as self-evident truths,
independent of any experience or experiment whatsoever!. This
view gave rise to the conviction that the parallel-postulate, which
it is difficult to recognize as self-evident because of its complexity,
was not in fact an axiom and so the statement affirmed in it
could be proved. But the many efforts in this direction did
not produce positive results; like an enchanted treasure, the
parallel-postulate would not yield up its secrets to investigators.
The attempts to prove it, which consumed a tremendous amount
of mental effort by generations of scholars, failed as the price
of idealistic interpretation of the essence of axioms.

The most common type of erroneous proof of Euclid’s parallel-
postulate was to replace it by an equivalent proposition, for
instance: a perpendicular and an oblique line on one and the
same straight line intersect; or, there is a triangle similar to
a given triangle but not equal to it; or: the locus of points
equidistant from a given straight line and located on one side
of it, is a straight line; or, any three points are either collinear
or cocyclic. Later we shall demonstrate that all these propositions
are fallacious if Euclid’s axiom of parallels does not hold.
Consequently, by taking any of them as an axiom we thereby as-
sume the validity of Euclid’s parallel-postulate, i, e. assume
to be correct what we want to prove.

Lobachevsky took a different path in his investigations in the
theory of parallels. Having started with attempts to prove the
axiom of parallels he soon noticed that one of them led to quite
unexpected results. This attempt consisted in using proof by
contradiction (reductio ad absurdum) and was based on the
following argument: if Euclid’s parallel-postulate is the consequence

L It is known that persons who were born blind but who have had
their eyesight restored surgically, cannot distinguish a cube from a sphere
for some time after the operation without first touching them. This
demonstrates a need of experience for the correct perception of geometrical
images, without which geometric concepts cannot be formed.
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of the other postulates of Elements, and if one assumes, in
spite of it, that ar least two straight lines not intersecting
a given straight line can be drawn through a point located outside
of that line in the same plane as it, then this assumption
should lead sooner or later, in its immediate or remote con-
sequences, to a contradiction. But in considering more and more
new consequences of this assumption, Lobachevsky became convinced
that, no matter how paradoxical they seemed from the standpoint
of Euclidean geometry, they formed a consistent system of theorems
that could form the basis of a new scientific theory.

Thus the foundation of non-Euclidean geometry! was laid;
its axiom of parallels differs from the Euclidean and coincides
with the assumption given above which we shall refer to henceafter
as Lobachevsky’s parallel-postulate.

But it still remained obscure whether it could confidently be
stated that not one of the infinite set of possible consequences of
Lobachevsky’s parallel-postulate would lead to a contradiction.
Lobachevsky outlined a way to solve this problem, pointing
out that the consistency of the geometry discovered by him
should follow from the possibility of arithmetizing it, i. e. from
the possibility to reduce the solution of any geometric problem
to arithmetic calculations and analytic transformations by using
the formulas of the hyperbolic trigonometry derived by himself.
Other scientists later found rigorous proofs of the consistency
of his geometry.

Lobachevsky’s investigations in the domain of the hyperbolic
geometry were very wide covering its elements, trigonometry,
analytical geometry and differential geometry. Using the methods
of his geometry he derived more than 200 new formulas for
calculating definite integrals. ’

Lobachevsky’s discovery was considered by his contemporaries
and even by his pupils as monstrous nonsense, insolent defiance
of logic and common sense2. Such an attitude toward a great

| It has since been found that, apart from the geometry discovered
by Lobachevsky, many other non-Euclidean geometries can be constructed.

2 One cannot, of course, groundlessly suspect Lobachevsky’s contempo-
raries of being unable to understand his discovery: many did not
express any opinion, possibly because the range of their scientific
interests did not include the sphere of Lobachevsky’s investigations;
we also know that the famous German mathematician Karl Gauss and
the outstanding Hungarian geometer Janos Bolyai, who, independently
of Lobachevsky, came to the idea of the possibility of constructing
a non-Euclidean geometry, shared his views. But Gauss, fearing not
being understood and ridiculed, did not publish any support of Lobachevsky’s
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idea demolishing hallowed conceptions is not surprising. Copernicus’s
heliocentric theory, which denied what seemed completely obvious
and asserted what seemed unthinkable, had just as hostile a reception.
It needed very profound considerations to understand the admissi-
bility of two different geometries. Let us now turn to presentation
of some of the most easily understood arguments.

The section on plane geometry in school textbooks studies
a plane independently of the surrounding space; in other words,
planimetry is the geometry of a Euclidean plane. Geometries of
certain curvilinear surfaces are also well known; an example is
spherical geometry, which is widely used in astronomy and
other branches of knowledge.

In every science the simplest concepts are most important. In
Euclidean geometry these are the concepts of point, straight
line, and plane. These terms are retained in non-Euclidean
geometries, so that by a ‘‘straight line’’ is meant a line along
which the shortest distance is measured between two points;
a ‘“plane” is a surface possessing the property such that if two
points of a ‘‘straight line” belong to the surface, then
all the points of that ‘‘straight line” belong to the surface.
In spherical geometry, for instance, a sphere and its great
circles are referred to, respectively, as a “plane” and ‘‘straight
lines”. This terminology is quite appropriate since, in any geometry,
a “straight line” is the simplest of all lines and a ‘plane”
is the simplest of all surfaces, the former possessing the most
important property of the Euclidean straight line and the latter
of the Euclidean plane!.

Let us note certain features of spherical geometry. For illustrative
purposes we shall consider it as the geometry of the surface of
a globe. It is not difficult to grasp that two ‘‘straight lines”
in this geometry (e. g. two meridians) always intersect at two diamet-
rically opposite points on the globe. Furthermore, the sum of
the angles of a spherical triangle is greater than n; for example,
in a triangle bounded by a quarter of the equator and by the
arcs of two meridians (Fig. 1) all three angles are right angles2.

ideas, and Bolyai, seeing that his own investigations in non-Euclidean
geometry (published in 1832) had not received recognition, abandoned
his mathematical studies. Thus Lobachevsky was left alone to struggle
for the correctness of his ideas.

1 It should be noted that in projective geometry there is no concept
of the distance between two points; the interpretation of the concepts
of a “‘straight line”” and of a “plane” does not apply in such geometries.

2 The angle between two lines at their point of intersection is
defined as the angle between their tangents at this point.
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Apart from globes, of course, maps of the terrestrial surface
are used in geography. This is equivalent to studying spherical
geometry by considering maps of a sphere, which is quite possible
provided that it is indicated how to measure the actual lines
and the actual angles between them from their representations
on the map, for the latter are distorted and the character of
the distortion is not uniform over the whole map. On maps
of the Earth’s surface employing Mercator’s projection ! (Fig. 2).
for example, the meridians are projected as parallel lines, and the
perpendiculars, which correspond to the geographic parallels,
are such that a segment representing 1° of a parallel has the
same length irrespective of the latitude; but in reality the
length of one degree of a parallel is the shorter the higher
the latitude.

Since a surface has two dimensions, the geometry studying
figures lying on a certain surface is usually called two-dimensional,
and the surface itself a two-dimensional space. Two types of
two-dimensional geometry have been known since antiquity,
Euclidean (for a plane) and spherical. Mathematicians did not
assign special importance to the existence of a two-dimensional
non-Euclidean geometry, namely spherical geometry, for the simple
reason that the sphere was studied in three-dimensional Euclidean
space, which made them disregard the non-Euclidean properties
of the sphere as such.

As a result of Lobachevsky’s investigations it was realized
that not only are surfaces with non-Euclidean properties imaginable
but also three-dimensional non-Euclidean spaces.

The introduction of the concept of three-dimensional non-Euclidean
geometries may puzzle unless we give the following explanation.

It is sometimes convenient to represent the results of studying
a certain class of phenomena in a geometrical form. Data on
the growth of labour productivity, for example, are often shown in
the form of graphs and diagrams. This demonstrates that various
real processes and states with no direct connection with geometry
can be depicted by means of geometric images.

If a graph is considered as a line on a Euclidean plane
it becomes clear that images of the two-dimensional Euclidean
geometry are employed in our example. In more complicated
cases we may have to resort to three-dimensional and even

1 Gerhard Merqator (1512—1594) was an outstanding Flemish carto-
grapher. The projection proposed by him in 1569 became universally
accepted and the nautical charts have been compiled by it ever since.
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multi-dimensional Euclidean and non-Euclidean geometries. But
it does not follow that they all describe the relaticns in exten-
sion; there are theories that employ geometric terms in their
formulations and these terms, generally speaking, are assigned
meanings that are not related to spatial concepts. Thus by adding
time as a fourth dimension to the three dimensions of real
space we introduce the concept of four-dimensional space
in which a given time interval is considered as a ‘‘segment
of a straight line”. In most cases this approach only creates
an appearance of vizualization, nevertheless it facilitates the analysis
of phenomena to a certain extent when they are studied by this
method.

So the construction of non-Euclidean geometries is justified
by the possibility of applying their conclusions to actually
existing objects. The fact that these conclusions are expressed
in terms of geometry is of no real consequence; it is not
hard to modify the geometric formulations so that they correspond
to the properties of the objects and phenomena in question.

The substitution of certain concepts for others, let us note,
is a common practice in applied mathematics when a theory
describes qualitatively different objects governed by the same
mathematical laws 1.

Three-dimensional geometries call for special attention. Ir-
respective of their other applications they can be regarded
as hypotheses claiming to describe the properties of real space.
Which one corresponds most closely to reality is a problem that
can only be solved by experimental testing.

But let us note the following fact, important for our further
exposition: a map of a Lobachevskian plane can be constructed
on a Euclidean plane, and in more than one way, just as is
done for a sphere. We shall use analysis of such a map as
the basis for our study here of hyperbolic ~eometry.

Lobachevsky’s geomerty received general recognition in the
following circumstances. In 1868 the Italian geometer Eugenio
(1835-1900) Beltrami has discovered that there was a surface
in the Euclidean space that possessed the properties of a
Lobachevskian plane, or rather of a certain segment of
this plane (if the shortest lines on the surface are considered
as ‘‘straight lines”). This discovery, which soon led to the

! As to the practical application of this principle see the section
onsimulationin V. G. Boltyansky's Differentiation Explained (Mir Publishers,
Moscow).
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construction of various maps of the Lobachevskian plane, convinced
scientists of the correctness of the Russian geometer’s ideas,
gave an impetus to a deeper study of his work, and stimulated the
starting of many investigations in the field of non-Euclidean
geometries.

The discovery of non-Euclidean geometries posed an extremely
complicated problem to physics, that of explaining whether real
physical space was Euclidean as had earlier been believed, and,
if it was not, to what type of non-Euclidean spaces it belonged !.
To answer it, it is necessary to check the validity of the axioms
experimentally, it being clear that, with the improvement in
measuring instruments, the reliability of the experimental data
obtained will increase and with it the possibilities of penetrating
into details that earlier escaped investigators’ attention.

Thus Lobachevsky brought geometry back to a materialist
interpretation of its axioms as propositions postulating the basic
geometric properties of space, perceived by humanity as the
result of experience.

We still cannot consider the problem of the geometric structure
of real physical space completely resolved. Nevertheless we may note
that in the modern theory of relativity real space is considered
on the basis of numerous data to be non-Euclidean, and to
have geometric properties more complex than those of Lobachevskian
space. One of the heaviest blows to belief in the Euclidean
structure of real space was dealt by the discovery of the
physical law that there can be no velocity exceeding the velocity
of light.

Now we can answer the question one hears fairly often,
namely, which of the two geometries, Euclid’s or Lobachevsky’s
is the true one. ’

No similar question arises regarding the two-dimensional Euclidean
and spherical geometries; both are obviously true, but each has
its own sphere of application. The formulas of spherical geometry
cannot be used for plane figures nor those of two-dimensional
Euclidean geometry for figures on a sphere. The same is true of
the different three-dimensional geometries: each of them, being
logically consistent, has its application in a certain field, not
necessarily geometrical in character; but it would be invalidated
if we ascribed it a universal character.

! When this problem is considered, the possibility of real space
being non-uniform must not be neglected, that is to say, the possibility
that its geometric structure may be different at different points.
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As to the geometric structure of real space, the problem,
as we have indicated, comes within the domain of physics and
cannot be resolved by means of pure geometry. Its specific
feature, by the way, is that no geometry represents spatial
relations with absolute accuracy; the molecular structure of matter,
for example, precludes the existence of solids of dimensions
perceivable by touch that would have the geometric properties
of an ideal sphere. Therefore the application of geometric rules
to the solution of concrete problems inevitably produces only
approximate results. So our concept of the geometric structure
of real space boils down to a scientifically justified conviction
that one geometry provides a better description of actual spatial
relations than others.

Though the theory of relativity uses the formulas of non-
Euclidean geometry, it does not follow that Euclid’s geometry
must be discarded, as happened to astrology, alchemy and to
pseudo-sciences like them. Both geometries are tools for investi-
gating spatial forms but the non-Euclidean enables finer studies
to be made while Euclid’s is adequate for solving most practically
important problems with a very high degree of accuracy; and
since it is, at the same time, characterized by great simplicity,
its wide application is always permanently guaranteed.

To conclude this brief outline let us note the new ideas
introduced by Lobachevsky into the development of geometry.

The scientific contributions of this outstanding thinker were
not restricted to his unveiling of the thousand-year-old mystery
of the axiom of parallels; the significance of his work was
immeasurably greater.

By subjecting one of Euclid’s axioms to critical analysis,
Lobachevsky laid the basis for reconsideration of some of
initial propositions of the Euclidean system, which subsequently
led to the development of rigorous scientific principles for the
axiomatic construction of geometry and other branches of math-
ematics.

Lobachevsky’s discovery of hyperbolic geometry freed the science
of spatial forms from the narrow framework of the Euclidean
system. His geometry found direct application in the theory of
definite integrals and in other spheres of mathematics.

Lobachevsky initiated the treatment of problems that could
not have arisen in the former state of mathematics, including
that of the geometric structure of real space. Without it the theory
of relativity, one of the greatest achievements of modern physics,
could not have been developed. Taking Lobachevsky’s investigation
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as a start, scientists have built a theory that makes it possible
to analyse the processes taking place inside the atomic nucleus.

In conclusion let us note the gnoseological significance! of
the ideas of this great Russian mathematician. Before Lobachevsky
geometry was dominated for centuries by the idealistic view
originating with the Greek philosopher Plato. By ascribing the
axioms of the Euclidean system an absolute character, Plato denied
their empirical origin. Lobachevsky decisively shattered this outlook
and returned geometry to a materialist position.

Section 3. Inversion

Suppose there to be a rule that allows the transition from any
given figure to another in such a way that the second is
completely defined once the first is fixed, and vice versa. The
transition so made is called a geometric transformation. The
most commonly used geometric transformations are parallel
translation, similarity transformation, rotation of a figure, pro-
jection, and inversion. Inversion is used extensively in mathematics,
for example, as a method of solving problems of construction,
in the theory of functions of a complex variable, and in
studying maps of a Lobachevskian plane.

In this section we wiil define inversion and its related concepts,
and consider a number of its basic properties.

Let a circle k be drawn in a plane a, with a radius r and
a centre O, and a point A4, not identical with the point O. Let
us take a point 4" on the ray OA in such a way that
the product of the segments O4 and OA’ equals the square of
the radius of the circle k: '

OA-04'=r? (1)

Let us agree to call points 4 and 4" symmetrical with respect
to the circle k.

If either of the points 4 and A’ is located outside the circle
k, then the second point lies within it, and vice versa; for
example, from the inequality OA > r we conclude, taking condition
(1) into account, that 04’ <r. But if either 4 or A’ lies on the
circle k then 4 and A’ coincide.

Consider Fig. 3 in which 4B is a tangent to the circle k, and
BA’ is a perpendicular to OA. Since OA’ is the projection of

I Gnoseology —the science of cognition.
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