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Abstract A theory of the tensile strength of oriented polymer fibres is presented. From an
analysis of the observed fracture envelope it is shown that the criterion for fracture of the
fibre is either a critical shear stress or a critical shear strain. Owing to the chain orientation
distribution in the fibre, the initiation of fracture is likely to occur in domains whose sym-
metry axes have orientation angles in the tail of this distribution. By considering the fibre
as a molecular composite, the tensile strength is calculated as a function of the modulus. The
results are compared to the observed values of PET, POK, cellulose II, PpPTA, PBO and PIPD
fibres. In addition, the relation between the ultimate strength and the chain length distrib-
ution is investigated. By using the critical shear strain as a fracture criterion in the Eyring
reduced time model, relations are derived for the fibre strength as a function of the load rate,
as well as for the lifetime under constant load. Moreover, this model predicts the dependence
of the strength on the temperature. The theoretical relations are compared to the experi-
mental results on PpPTA fibres.

Keywords Polymer fibre - Strength - Chain length distribution - Creep fracture -
Lifetime - Poly(p-phenylene terephthalamide)

Abbreviations and Symbols

A Cross-sectional area

c Concentration

d. Interplanar spacing

d.r. Draw ratio

D Diameter of the fibre

DABT  Poly(p-benzanilide terephthalamide)
DP Degree of polymerisation

e. Chain modulus

e, Modulus transverse to the chain axis
esd Estimated standard deviation

E Fibre modulus

ERT Eyring reduced time

flz) Chain length distribution

fu(2) Molecular weight distribution

g Shear modulus of the domain

& Apparent shear modulus

G Torsional modulus of the filament
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HT High tenacity
h(z) Crossing length distribution
I(U) Transition density distribution

j(®) Creep compliance

kg Boltzmann constant

K Kelvin

Ly Contour projection length of the chain
Lc Contour length

Lg Griffith crack length

Lp Persistence length of the chain

m Weibull modulus

M, Number-average molecular weight

M, Weight-average molecular weight

M, Z-average molecular weight

m.u. Monomeric unit

N, Avogrado’s number

p Distance between periodic force centres

PAN Polyacrylonitrile

PBO Poly(p-phenylene benzobisoxazole)

PE Polyethylene

PET Poly(p-ethylene terephthalate)

PIPD  Poly({2,6-diimidazole[4,5-b:4",5'-e]pyridinylene-1,4(2,5-dihydroxy)phenylene})
POK Polyetherketone

PpPTA  Poly(p-phenylene terephthalamide)

P(o) Cumulative failure probability

(Py) Internal order parameter

Py Order parameter of the directors
q Crack size

r Radius of chain cross section
RH Relative humidity

s.S. Spinning speed

t Time

t, Lifetime

T Temperature

T, Glass transition temperature
Thi Nematic-isotropic transition temperature
T, Reference or Vogel temperature
u Chain length

u, Average chain length

U, Bonded chain length

U Monomer length

U Activation energy

UHMW Ultra-high molecular weight

Vv Volume

V. Chain volume fraction

Vel Unit cell volume

w Strain energy

w, Activation energy of creep

w, Fracture energy

we Strain energy of the chain

ws Shear energy
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w3, Maximum shear energy

w3 Shear energy of fracture

w, Surface energy of a crack

z Chain length in monomeric units

Z; Bonded chain length in m.u.

z, Number-average chain length in m.u.
Zid Weight-average chain length in m.u.
Greek symbols

B Critical shear strain in tensor notation
Yy Shear strain in engineering notation

é Relaxation time

€ Strain

&, Strain at fracture

& Shear strain at fracture

& Fibre strain

& Ultimate strain at fracture

g Yield strain of the fibre

£ Shear strain in tensor notation

£y Viscoelastic shear strain of a domain
A Shear yield strain in tensor notation

4 Strength of orienting nematic potential
n Viscosity

0 Orientation angle at stress o

6, Orientation angle at fracture

Q] Orientation angle in the unloaded state
A Load rate

v Frequency

p(6) Orientation distribution of the chains
o Stress

Gy Tensile strength

gy Fibre strength based on shear deformation only
Ocomp Strength of a macrocomposite

o Ultimate strength

g, Longitudinal strength

or Transverse strength

o, Yield stress

T Shear stress

T, Shear strength

De*:‘?‘é":ﬂj—'

Maximum shear stress
Normalised shear stress
Shear yield stress
Ultimate shear strength
Euler’s constant
Angular frequency
Activation volume
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1
Introduction

Organic polymer fibres offer an impressive range of mechanical properties. The
tensile modulus of these fibres varies between 5 and 330 GPa, with a tensile
strength up to 7 GPa, a compressive strength up to 1.7 GPa, and a temperature
resistance up to 400 °C. The tensile curves of these fibres for temperatures be-
low the glass transition temperature, including the yield phenomenon, are well
described by the continuous chain model [1-10]. Considerable attention has
been given in the literature to the relation between the tensile strength and the
chain length distribution [11-14]. As will be shown here, there are also other
factors of similar importance which determine the strength of a polymer fibre.
In this report a relationship is derived describing the fibre strength as a func-
tion of the orientation distribution of the chains and the intrinsic mechanical
properties, such as the elastic modulus of the polymer chain and the modulus
for shear between the chains. In addition, a modified version of Yoon’s model
for the description of the relation between the strength and the chain length
distribution is presented. Finally,a model is proposed for the dependence of the
fibre strength on the time and the temperature.

Before embarking on the discussion of these intrinsic factors determining the
strength of polymer fibres, the effect of structural and morphological imper-
fections on the fibre strength are briefly discussed. During the manufacturing
process of polymer fibres all kinds of imperfections are introduced, like struc-
tural inhomogeneities, impurities and voids. These so-called extrinsic factors
result in an imperfect bonding between the chains and may give rise to stress
concentrations, which after a catastrophic growth of pre-existing cracks can
lead to fracture. These imperfections cause the size effects, viz. the transverse
effect or the dependence of the strength on the fibre diameter, and the longi-
tudinal effect or the dependence of the strength on the test length [15-17]. Two
different approaches can be recognised for the description of the size effects.
The first is based on Griffith’s theory of crack propagation, which considers the
energy balance between the external work, the surface energy of the crack and
the elastic energy of the material [18, 19]. This theory is based on the elastic the-
ory of infinitesimal deformations, and so does not apply to highly deformable
materials. It can be applied to the transverse effects and leads to the semi-em-
pirical equation for the strength of a material

1 1
—=—+K-VD (1)
O, Op

where o, is the actual strength of the fibre, o, the strength of the flawless fibre
or the ultimate strength, K a constant and D the diameter of the fibre [20]. It
was later shown by Penning et al. that the scaling of the tensile strength with
D3 can be derived from geometrical considerations as well [16]. An example
of this relation is presented in Fig. 1, where the yarn strength of poly(p-phenyl-
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Fig. 1 The inverse of the observed strength of PpPTA yarns versus the square root of the
diameter of the filaments. Linear regression yields 0;'=0.063(16)+0.0643(27) D% (GPa)™!
with 0,=16(4) GPa, and estimated standard deviations in parentheses

ene terephthalamide) or PpPTA is plotted versus the filament diameter [21].
Apparently, for the strength of a flawless PpPTA filament the extrapolation
yields 0,=16+4 GPa. As will be shown in this report, this value is too large.

Whereas in the second approach of the size effects it is also assumed that
fracture is controlled by defects, the strength is now considered a statistically
distributed parameter rather than a physical property characterised by a single
value. The statistical distribution of fibre strength is usually described by the
Weibull model [22,23]. In this weakest-link model the strength distribution of
a series arrangement of units of length L, is given by

Lo\
P(o)=1-exp [_L_(;) :I 2)
0 \9p

where P(0) is the cumulative failure probability at a stress o, g, a scaling
parameter and m the Weibull modulus. To make a so-called Weibull plot of a
yarn P(o) is approximated by

n;

n+1

where n; is the number of filaments that have broken at or below a stress oand
n is the total number of filaments tested. The length dependence is expressed
through the test length L and can be written as

log [-log (1 - P)] - logL + logL, = mlogo - mlogo, (4)
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Fig. 2 Weibull plot of the filament strength for a test length of 10 cm of a PpPTA yarn yield-
ing a Weibull modulus of 20.6. The average filament strength is 3.2 GPa

Thus, given a Weibull distribution of the filament strength, a plot of log
[-log(1-P)] versus logo results in a straight line with a slope m. For the range
5<m<30 the relation between the coefficient of variance (cv) of the filament
tenacity distribution and m is given by cv=1.2 m™!. Figure 2 presents an exam-
ple of a Weibull plot of the filament strength of a PpPTA yarn, yielding a
Weibull modulus of 20.6.

The average fracture stress of the filaments for a test length L is given by

1 1
(o) = apL“WF(l +—) 5)

m
where I is the gamma function [15]. Equation 5 shows that the average strength
depends on the test length of the fibre sample, which can be approximated by

log (o)) = C - % log(L) with C=log[o,I'(1+ 1/m)] (6)

Thus, the Weibull modulus can be derived from the strength distribution at a
fixed test length as shown by Eq. 4, as well as from a plot of the average filament
strength as a function of the test length according to Eq. 6. In Fig. 3, an exam-
ple of the relation in Eq. 6 is presented for a PAN-based carbon fibre [8]. From
this plot a value m=7.2 with an estimated standard deviation (esd) of 0.7 is de-
rived, whereas the m values obtained from the strength distributions at fixed
length are 5.2 (0.6) for 2 mm, 5.1 (0.6) for 10 mm and 4.6 (0.6) for 25 mm, with
esd values in parentheses. Apparently the length effect is weaker than expected
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Fig. 3 The natural logarithm of the average filament strength (n=40) as a function of the
natural logarithm of the test length for an intermediate-modulus, PAN-based carbon fibre
with an impregnated bundle strength of 5.7 GPa [8]

from the width of the strength distributions at fixed length, which may indicate
that adjacent segments in the carbon filament are not statistically independent,
as is assumed by the weakest-link theory, i.e. the model is not quite suitable.
With regard to the application of fibres in uniaxially reinforced composites, the
critical length of a fibre is the test length for which the average filament tenac-
ity is equal to the impregnated bundle strength. Since the impregnated bundle
strength of this carbon fibre is 5.7 GPa, it follows from Fig. 3 that the critical
length is 4.5 mm. Weibull moduli of filaments taken from yarns range from 5
for brittle carbon fibres to about 50 for ductile melt-spun poly(p-ethylene
terephthalate) (PET) fibres.

Penning et al. studied the transverse and longitudinal size effects in high-
strength ultra-high molecular weight (UHMW) polyethylene (PE) fibres and
found that the length or longitudinal size effects become weaker as the tensile
modulus of the fibre increases, whereas the transverse effect becomes more
pronounced as the modulus increases [16]. In particular, the length effect dis-
appeared almost completely for PE fibres with a draw ratio of 70. This was
attributed by Penning et al. to the fact that the high-modulus PE fibres do not
possess a distribution of macroscopic flaws, occurring at distances of the same
order of magnitude as the applied test lengths, but contain a microscopic defect
structure at very short intervals of about 100 nm. They concluded that, appar-
ently, transverse and longitudinal effects have different physical backgrounds
and, therefore, cannot be described simultaneously by statistical theories such
as the weakest-link hypothesis. In the case of high-modulus/high-strength
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fibres, such as PpPTA and poly(p-phenylene benzobisoxazole) or PBO, and
poly({2,6-diimidazole[4,5-b:4,5"-¢]pyridinylene-1,4(2,5-dihydroxy)phenylene})
or PIPD, made by the wet-spinning process, the transverse size effect is difficult
to detect, because a decrease of the filament diameter is often accompanied by
an increase of the tensile modulus. As will be shown in Sect. 2 this results in an
increase of the strength. In this regard the conclusions drawn from Fig. 1 should
be considered with some caution. With regard to the observation of Penning at
el. that the longitudinal size effect becomes weaker as the modulus increases,
it will be shown in this report that, by applying Griffith’s theory on cracks in
anisotropic fibres, elongated cracks are supposed to be more damaging in low-
oriented fibres than in highly oriented fibres.

An extensive discussion of the concept of fibre strength, the Weibull mod-
ulus, and its relation to fracture toughness has been given by Van der Zwaag
[15]. An increase of the material toughness will result in an increase of the
Weibull modulus, because incorporation of local plastic deformation will de-
crease the stress concentrations in the fibre. This is much more easily achieved
with flexible polymer chains than with rigid-rod chains, not to mention the
graphitic planes in carbon fibres. Van der Waals and hydrogen bonds offer more
advantages in this respect than covalent bonds between the building elements
of the fibre. This explains the observation that the Weibull modulus of yarns de-
creases according to the sequence: PE, PET, cellulose, PpPTA, PBO and carbon
fibre. The particularly low value of the Weibull modulus of carbon fibres is a
consequence of the brittleness of these fibres. Therefore, the increase of the
strength of carbon fibres calls for extreme care at each stage of the process to
preclude any kind of flaw-producing impurity [24].

Melt-spun fibres such as PET displaying a “flag” or a plastic mode of defor-
mation at the end of the tensile curve show a large variation of the elongation
at break. At low tensile speeds these fibres display ductile fracture initiated by
crack growth, and for increasing testing speeds the melt fracture morphology
becomes dominant. Adiabatic heating of the fibre during rapid cold drawing will
raise the temperature well above the glass transition temperature [25]. But even
at medium strain rates of 100% per minute tiny irregularities in the fibre may
cause localised drawing or “necking”, whereby the temperature can approach
the melting temperature, resulting in an extra elongation before fracture. Hence,
this random phenomenon of “hot spots” occurring during cold drawing causes
the wide range of elongations at break observed during filament testing of PET
fibres. With regard to the failure mode, it is significant to note that polymer
fibres without a melting temperature, such as cellulose, PpPTA, PBO and PIPD,
generally display a more or less fibrillar fracture morphology. This is in contrast
to polymer fibres having a melting temperature like PE, PET and the aliphatic
polyamides, which often show melt-flow phenomena during cold drawing.

Weibull plots of various fibre properties, such as the filament count, modu-
lus, elongation at break and the strength, can provide important information
on the quality and performance of the manufacturing process. The results can
be used to formulate a strategy for the improvement of the yarn properties.
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As will be shown in this report, polymer fibres gain additional strength by
an increase of the molecular weight and by a more contracted orientation dis-
tribution, i.e. a higher modulus. For the wet-spun fibres, a strength increase can
be achieved by improvement of the coagulation process, which makes for a
more uniform structure and chain orientation in the cross section of the fibre,
and by a reduction of the amount of impurities.

For an understanding of the fracture process and the dependence of the
strength on the chain orientation distribution and the basic elastic constants,
we briefly discuss the tensile deformation of polymer fibres. The continuous
chain model provides a good description of the tensile curve of a polymer fibre
[1-10]. In this model the fibre is built up of parallel oriented fibrils with equal
properties. Thus it is assumed that a mechanical model of the extension of a
single fibril as a function of the fibre stress gives a complete description of the
tensile deformation of the fibre. Each fibril is a series arrangement of domains
consisting of perfectly oriented chains. The domains are cylindrically sym-
metric around the chain axis and the axes of the domains follow an orientation
distribution, p(®), in the unloaded state. The elastic constants of the domain
most relevant to the tensile extension of the fibre are the chain modulus, e.,and
the modulus for shear between adjacent chains, g. Figure 4 shows the stresses
acting on a domain due to a tensile stress on the fibre and Figs. 5 and 6 depict
schematic representations of the domain deformation according to the con-
tinuous chain model. The fibre strain is given by

o{(cos?0) {(cos@) - {cos®)
&= +

7
e. (cos®) (7)
where @ is the initial orientation angle of the chain axis at zero load and 6 the
angle at a tensile stress o. The averaging is performed over the chain orienta-
tion distributions p(®) and p(6) of the domains in the fibril. As shown by Eq. 7
the fibre strain is composed of two contributions, viz. the elastic chain exten-

o sin20

Fig. 4 The four normal stresses and the four equal shear stresses acting on the domain in
the fibre under a tensile stress 0. The chains are parallel to AB and make an angle 6 with the
fibre axis



