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Preface

For dissipative dynamics, chaos is defined as the existence of strange attractors.
Chaotic behaviour was often numerically observed, but the first mathematical proof
of the existence, with positive probability (persistence), of a strange attractor was
given by Benedicks and Carleson for the Hénon family, at the begining of 1990’s. A
short time later, Mora and Viana extended the proof of Benedicks and Carleson to the
Hénon-like families in order to demonstrate that a strange attractor is also persistent
in generic one-parameter families of surface diffeomorphisms unfolding a homoclinic
tangency, as conjectured by Palis. In the present book, we prove the coexistence
and persistence of any number of strange attractors in a simple three-dimensional
scenario. Moreover, infinitely many of them exist simultaneously.

Besides proving this new non-hyperbolic phenomenon, another goal of this book
is to show how the Benedicks-Carleson proof can be extended to families different

from the Hénon-like ones.
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INTRODUCTION

This book deals with the existence and persistence of any number of coexisting strange
attractors in three-dimensional flows. More precisely, we shall define a one-parameter
family X, of piecewise regular vector fields on R? and we shall prove that for each
natural number n, there exists a positive Lebesgue measure set of parameter values
for which X, has, at least, n strange attractors. Moreover, X, exhibits an infinite
number of strange attractors for some values of the parameter.

By an attractor we mean a compact invariant set A having a dense orbit (tran-
sitive) and whose stable set W*(A) has a non-empty interior. For different notions
of attractor see [14]. We call an attractor strange if it contains a dense orbit with a
positive Liapunov exponent (sensitive dependence on initial conditions).

The term strange attractor was first used by D. Ruelle and F. Takens [20] to
suggest that turbulent behaviour in fluids might be caused by the presence of attrac-
tors which are locally the product of a Cantor set and a piece of two-dimensional
manifold. The notion of strange attractor associated to the sensitive dependence on
initial conditions was needed to explain asymptotic dynamics which numerically or
empirically manifest this kind of unpredictable behaviour. One of the most relevant
dynamics of this type was earlier observed by Lorenz [11] on analysing the quadratic

vector field
' = —10z + 10y

Yy =28z —y—zz
Z=-%z4zy ,
which follows from a truncation of the Navier-Stokes equations. Surprisingly, under
small perturbations of the system, he seemed to get a persistent but not stable at-
tractor, i.e. small perturbations of the original system give rise to nearby attractors
but, in general, they are not topologically equivalent.
From a physical point of view, a certain degree of persistence is as relevant as the

unpredictability of the dynamics resulting from the afore-mentioned sensitivity with

respect to initial conditions. So, if a family X, of vector fields exhibits a strange
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attractor for the value of the parameter u = pg, the dynamics of the attractor should
only be considered if for every § > 0, strange attractors still exist for values of the
parameter belonging to a positive Lebesgue measure set E C B(ug, §). In this case,
the attractor is said to be persistent for the family X, and is said to be fully persistent
if we can take E = B(uo, ) for some 6§ > 0.

A non-periodic hyperbolic attractor is strange, fully persistent and even stable.
From numerical analysis, Lorenz’s attractor seems to be strange, fully persistent but
not stable. M. Hénon [7] found a possible persistent (but not fully persistent) strange

attractor for the family
Hop(z,y) = (1 — az’® + y,bz)

with @ = 1.4 and b = 0.3. At the begining of 1990’s, in a historical and very
complex paper [3], M. Benedicks and L. Carleson proved mathematically that the
Hénon family has persistent strange attractors for values of the parameters close to
a =2and b = 0. A short time later, L. Mora and M. Viana [15] proved that,
such as J. Palis had conjectured, generic one-parameter families of diffeomorphisms
on a surface which unfold a homoclinic tangency have strange attractors or repellers
(negative attractors) with positive probability in the parameter space. For a proof of
this result in higher dimensions, see [25].

Homoclinic orbits were discovered by H. Poincaré a century ago. In his famous
essay on the stability of the solar system, Poincaré showed that the invariant mani-
folds of a hyperbolic fixed point could cut each other at points, called homoclinics,
which yield the existence of more and more points of this type and consequently, a
very complicated configuration of the manifolds, [18]. Many years later, G. Birkhoff
[4] showed that in general, near a homoclinic point there exists an extremely intrin-
cated set of periodic orbits, mostly with a very high period. By the mid-1960’s, S.
Smale [21] placed his geometrical device, the Smale horseshoe, in a neighbourhood
of a tranversal homoclinic orbit, thus explaining Birkhoff’s result and arranged the
complicated dynamics that occur near a homoclinic orbit by means of a conjugation
to the shift of Bernouilli.

The strange attractors found in [15] arise from the creation or destruction of Smale
horseshoes associated to the transversal homoclinic points which appear as the result
of the bifurcation of a tangential homoclinic point. Roughly speaking, homoclinic

bifurcations mean the creation of transversal homoclinic orbits resulting from small
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perturbations of the dynamical system. Though one case of homoclinic bifurcation is
that of homoclinic tangency, there are, however, interesting examples of homoclinic
bifurcations that do not correspond to homoclinic tangencies. For an extensive study
of the phenomena which accompany homoclinic bifurcations, see the book by J. Palis
and F. Takens, [17]. We also quote this reference as a suitable complement to this
introduction. In Chapter 7 of [17] the authors propose homoclinic bifurcations as the
doorways (the only ones in dimension two) to non-hyperbolic dynamics: coexistence
of infinitely many sinks, persistence of Hénon-like attractors, etc. In the present book
we place ourselves in one of these doorways from which we have access to an infinite
number of strange attractors and to any finite number of persistent strange attractors,
within a three-dimensional vector field framework.

In order to place ourselves within this framework, we evoke the following result
proved by P. Sil’'nikov [22]: In every neighbourhood of a homoclinic orbit of a hyper-
bolic fixed point of an analytical vector field on R® with eigenvalues A and —p + iw
such that 0 < p < ), there exists a countable set of periodic orbits. This result is
similar to Birkhoff’s for diffeomorphisms and thus, it should be completed by pro-
ceeding as Smale did. So, C. Tresser [24] proved that in every neighbourhood of
such a homoclinic orbit, an infinity of linked horseshoes can be defined in such a way
that the dynamics is conjugated to a subshift of finite type on an infinite number of
symbols. If, on the contrary, 0 < A < p, then the dynamics is trivial: The w-limit set
of any point in a neighbourhood of the homoclinic orbit is contained in the closure of

this orbit. In the case A = p, we shall prove our main result:

Theorem A. In the set of three-dimensional vector fields having a homoclinic orbit
to a fized point with eigenvalues A > 0 and —\ % iw satisfying I%' < 0.3319, there
exists a one-parameter family X, of piecewise reqular vector fields such that for every
neighbourhood V' of the homoclinic orbit, for each k € N and for every value of the
parameter a in a set of positive Lebesque measure depending on k, at least k strange
attractors coezxist in V. Moreover, for some value of the parameter a, there exist

infinitely many strange attractors contained in V.

Piecewise regular vector fields with a Sil’'nikov homoclinic orbit were constructed in
[24]. In fact, these orbits arise in families of analytical vector fields as a codimension-
one phenomenon, [19]. Recently, in [9] the authors proved the existence of vector fields

verifying the hypotheses of Sil’nikov’s theorem in generic unfoldings of codimension-



4 INTRODUCTION

four singularities in R3 (Sil’'nikov bifurcation). This homoclinic bifurcation occurs
when the parameters take values on a manifold of codimension one. Just off this
manifold the homoclinic orbit disappears and an infinite number of horseshoes given
in [24] are destroyed. Then, as a consequence of [15], a method of constructing families
of quadratic vector fields on R® which display strange attractors is obtained.

Unlike the Sil’nikov bifurcation mentioned above, the homoclinic orbit in Theorem
A endures for each vector field X,. Therefore, in a neighbourhood of this orbit we can
choose a suitable transversal section IIy and define the transformation 7" : Il — Il
associated to the flow. After splitting 1y into a countable union of rectangles, R,,, and
carrying out adequate changes of variable, we get the following sequence of families

of diffeomorphisms
1
Tropl(z:y) = (fk,a(m) +5 log (1 + \/l;y) Vb (l + \/Zy) e’ sin :c) ,

with b = 2™ and m € N. For a large enough m, each T, is a small perturba-
tion of Uy 4(z,y) = (fra(),0), where fyo(z) = A'loga + z + A~ logcosz. Thus,

Theorem A is an immediate consequence of the following one:

Theorem B. Fized 0 < X < 0.3319, for every mg € N and for each k € N there
exists a positive Lebesque measure set E = E(k) of values of the parameter a such
that, for every a € E, there ezist, at least, k transformations T qp, with b < e=2™mo
having a strange attractor. Moreover, there exist values of the parameter a for which

infinitely many T qp simultaneously have a strange attractor.

Mora and Viana defined a renormalization in a neighbourhood of a homoclinic
point to transform a generic family of diffeomorphisms unfolding a homoclinic bifur-
cation into a Hénon-like family. These families are defined in Proposition 2.1 of [15]
so as to be suitable small perturbations of H,(z,y) = (1 — az?,0) just as the Hénon
family H,p is for small values of b. The changes of variable which we have to carry
out to obtain T} 4, play the same role as does the renormalization in [15]. We shall
prove in Proposition 1.3 the conditions which make T} .4 a good perturbation of ¥y ,.
Then, we shall say that T) . is an adequate unfolding of Wy ,.

From this stage and in spite of f,, not being the quadratic map, the proof of
Theorem B can be developed by means of a cautious adaptation of the ideas and the
arguments in [3] and [15]. Nevertheless, since the density of these references makes

them hard to read, we feel it is both useful and necessary to give a proof in detail in
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order to facilitate the understanding of the intricate inductive method and the control
of the numerous estimates required. We also try, thereby, to show how the ideas for
the Hénon-like families can be applied to adequate unfoldings of unimodal maps which
are distinct from the quadratic one. Maybe these unfoldings take part in many other
cases where possible strange attractors have also been observed numerically. See, for
instance, [5).

This book is organized as follows:

In Chapter 1 we introduce the afore-mentioned changes of variable for defining
the transformations T 4. In fact, it is shown that T) 44 is an adequate unfolding of
fra- Next, we prove that, for every positive A, there exists a value of the parameter
a, a(A), such that fy,(n) has a homoclinic orbit and that, for a sufficiently small A,
for instance A < 0.3319, the Schwarzian derivative of the map f q(») is negative. This
means that fj 4(x) has no periodic attractors, [23].

In Chapter 2 we study the unimodal family fy, for 0 < A < 0.3319. It is shown
that there exists a constant cg > 0 such that, for every 0 < ¢ < min{cg,log(1 + A)},
there is a value of the parameter ag = ag(\,c) < a()) close to a()) and a positive
Lebesgue measure set E = E(\,¢) C [ao,a(\)] such that every a € F satisfies the

exponential growth condition for every n € N; i. e.,
|Dp(a)| = ‘(f,(‘,a)/ (f,\’a(c,\))‘ > e for every n € N.

This result, which is stated in Theorem 2.1, is a consequence of Theorem 6.1 in [13],
that is, of the Benedicks and Carleson theorem for unimodal maps distinct from
the quadratic one. However, since comprehension of the unidimensional case will be
necessary to understand the bidimensional dynamics, which is studied in successive
chapters, and since many of the specific ideas used in the study of f) , will be evoked
in the study of T} 4, we have to develop a different proof from the one given in [13].

To construct a positive Lebesgue measure set F such that the exponential growth
condition holds for every a € E, we proceed by induction on the length n of the
orbit of fyq(cy). Clearly, whenever this orbit remains far from the critical point
(and this is easily obtained for a number N of initial iterates and for the values of
the parameter belonging to an interval [ay(A),a(N)]), the orbit of f).(cy) will be
e’-expansive, where ¢ depends on the distance between the initial orbit and c,. This
remark allows us to start the inductive process, but, since the length of the interval

[an(A),a(N)] tends to zero as N tends to infinity, we have to let the orbit of fyq(c»)
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accede to any sufficiently small neighbourhood (cy — 6, ¢y + ) of the critical point, at
iterates which will be called returns. In this case, since the derivative of the unimodal
map tends to zero as the distance between the return and the critical point tends to
zero, we have to control such distances. To this end, it seems to be natural to permit
this distance to decrease as the return iterate increases, because the small derivative
may be distributed in a larger exponent in the definition of expansiveness. Hence, if
Q-1 C [an(X),a(N)] denotes the set of values of the parameter a for which £, 4(c»)
is e‘-expanding up to time n — 1, we remove, from §2,,_;, those parameters for which

the following basic assumption does not hold:
[fRalea) —ea| 2 e,

where a > 0 is a small positive constant. In this way, a set §2, is constructed in a
correct, but unfinished, posing of the problem. In fact, we also have to control the
rate of previous iterates to the return whose expansiveness has been annihilated by
the small derivative at the return. Here is where the reason for the inductive method
becomes patent:

Since the orbit at the return is close to the critical point, their successive iterates,
and consequently the derivatives at these iterates, are close each other. In this context,
the binding period [n + 1,n + p] is defined by taking the largest natural number p
such that

|3t (ex) = flaler)| S e for 1< j <p,

where 8 > 0 is a small constant. By taking a < [ small enough it is shown that
the length of the binding period is smaller than n. Then, by using the inductive
hypothesis for the orbit of the critical point and bearing in mind the closeness between
its iterates and the respective iterates of the return, the small derivative at the return
is proved to be compensated during the binding period. The remainder of the iterates
outside the binding periods are called free iterates and they will be used to recover
the exponential growth of the orbit. Therefore, the rate of these iterates has to be
sufficiently large, for which we have to remove from Q;, the parameters not satisfying

the following free assumption:
F.(a) > (1 - a)n,

where F,(a) denotes the number of free iterates in [1, n).
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In this way, the sets (2, are inductively constructed so that if, in each step, the
measure of the excluded set exponentially decreases with respect to m, then the set
E announced in Theorem 2.1 can be obtained by intersecting all the sets €,. The
detailed development of the whole process requires a large number of estimates. We
finish this advance of Chapter 2 by calling attention to the relationship between
the different constants taking part in the process and to their adequate and orderly
selection:

First, we consider an arbitrary A < 0.3319. Once A is chosen, the constant cy of
Theorem 2.1 depends on A and is given in Proposition 2.2. Once c is fixed with 0 <
¢ < min {cp,log(1 + A)}, in the definition of binding period we take 3 = 8(), c) small
enough. With respect to the constant o taking part in basic and free assumptions,
this will depend on A, ¢ and § and will be taken sufficiently small with respect to
them. In order to establish the concept of return, a constant § = (), ¢, 3, a) is
chosen which is related to the natural number A (§ ~ e~2) given in Proposition 2.2.
In accordance with this proposition, A has to be large enough. Hence, § will be taken
small enough and, in particular, ¢ is always said to be sufficiently less than A, ¢, 8

and a. Schematically, we write
A = co(A) > ¢ >> B(A¢) >> a(A ¢, B) >> 6(\ ¢ B,a).

Finally, the inductive process will be started in an iterate N = N()\, ¢, 3,a, §) >> A.
Then, for fixed N, a set Qy = [ap,a(\)] is constructed, where the inductive process

starts. Lastly, ap only depends on A and c.

In the remaining chapters we prove Theorem B. From Chapter 1, we know that
the closure of the unstable manifold of the saddle-point F,,, is an attracting set.
Therefore, this set will be a strange attractor whenever the existence of a dense orbit
with a positive Liapunov exponent is stated.

Though T 4 is close to ¥, , for small values of b, the expansiveness, with positive
probability, along the orbit of the critical point of ¥y , does not easily extend to T} 4.
The hardness of this extension begins to appear in the definition of critical points for
the bidimensional map. In fact, the role of critical points is now played by points
on W*(P,,) such that the differential map of Th,p sends the tangent vector to
W*(P,,m) at these points into a contractive direction, that is, into a direction which

is exponentially contracted by all the iterates of the differential map. These concepts
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will be accurately stated in the inductive process framework which takes part in the
proof of Theorem B.

In Chapter 3 we study, for each n € N, the maximally contracting and maximally
expanding directions for the n-th iterate of the differential map. Under inductive
hypotheses of expansiveness, remarkable properties of these directions are established.
Of course, the known expansiveness on the first iterates allows the inductive process
to start.

The algorithms used for constructing critical approximations of order n from cri-
tical approximations of order n — 1 are introduced in Chapter 4. A point z belonging
to W*(P, m) is said to be a critical approximation of order n if the image under the
differential map of the tangent vector to W*(P, ) at z lies on the maximally con-
tracting direction for the n-th iterate of the differential map. Critical approximations
of order n play, in the respective step of the inductive process, the same role as that
of the critical point in the unimodal case. In order to prove expansiveness on the
orbit of every critical approximation z, we have to control, at its returns, the distance
between the respective iterate and the critical approximations of order equal to or
lower than the order of z. In fact, it will be sufficient to control the distance to a
certain critical approximation placed in a determined situation (tangential position).
As in the unidimensional case, it will be possible to compare the exponential growth
in the successive iterates of returns with the growth in the respective iterates of a
critical approximation in tangential position (binding point) during a period of time
which will also be called binding period.

To guarantee the existence of binding points, the afore-mentioned algorithms will
need to adduce sufficient critical approximations and these approximations will have
to be distributed in a suitable way, as their orders increase, on the different branches
that W*(P, ) defines in its continuous folding process. This adequate distribution is
obtained by ordering the branches of W*(P, ,,) by means of the concept of generation.
In the fourth chapter it is also proved that from old critical approximations close
new ones are constructed in such a way that each critical approximation generates a
convergent sequence of critical approximations. By definition, critical points are the
limits of these sequences. Expansiveness along the orbits of the image of every critical
approximation yields expansiveness of the orbit of the respective critical point.

We argue by induction in Chapter 5 in order to rigorously define the recurrent

process for constructing the critical set C, (set of critical approximations of order
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n — 1). In this chapter the concepts of returns, binding points and binding periods
associated to each point bound to C, are introduced. Next, we deal with a new
difficulty which arises in the treatment of the bidimensional problem: the folding
phenomenon. When a return p of a critical approximation zy takes place, that is,
when 2, = TY, (%) is bound to C,, the slope of the vector w, = DT}, ,(z1)(1,0)
may be high. In this case, the study of the behaviour of w,, which coincides with
the study of the expansiveness of the orbit of z;, is far from being an unidimensional
problem. Nevertheless, it will be proved that, after a number [ of iterates, the slope of
Wyt = DT,{‘,:,Z(Zl)(l, 0) is very small again. The period [ + 1, u + {] will be called the
folding period associated to the return p. During this period we only have knowledge
about the evolution of the vector h,, which corresponds to the horizontal component
of w,. The choice of iterates, on which the study of the behaviour of the vectors
wj is replaced by the study of the behaviour of h;, is called the splitting algorithm.
Chapter 5 ends by establishing the set of inductive hypotheses which allow us to state
the expansiveness, up to time n, of every point bound to C,,. In Chapters 6 and 7
these inductive hypotheses are proved at time n.

The main objective of Chapter 6 is to find, for every free return n of a critical
approximation zy € Cy, a binding point {; € C,, in tangential position. The loss of
exponential growth at each return is estimated throughout the chapter. In Chapter
7 it is shown that these losses are compensated by the exponential growth, in the
first iterates, of the vectors h;((1), where (o is the binding point associated to the
considered return, {; = Th4(¢o) and h;((;) is the respective vector given by the
splitting algorithm related to the orbit of ¢;. Finally, an upper bound for the binding
period associated to each return of every critical approximation is obtained.

Chapter 8 is the longest of this book and many references to previous chapters,
especially to Chapter 2, are made there. The process of exclusion of parameters
needed to deduce the e‘-expansiveness of the image of every critical point for a positive
Lebesgue measure set is developed. The starting point of this chapter is the existence,
with certain properties, of analytic continuations of the critical approximations. These
properties are also inductively proved and they permit us to assume that the binding
point is independent of a (for small changes of a) as occurs in dimension one. To
procede as in Chapter 2, it is necessary to redefine the sets C,,, taking new critical
sets with, perhaps, less elements but still sufficient ones so as to ensure the existence

of binding points in every return. On the other hand, the cardinal of C, is small
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enough so that, after removing the parameters for which the orbit of some critical

approximation fails to be expansive, a positive Lebesgue measure set E remains.

The global interpretation of the proof of Theorem B, developed throughout the
final six chapters of the book, is not simple but a much simpler treatment does
not seem to exist. The inductive method is used so frequently that the reader will
have to control which step is applied each time. Furthermore, some concepts have
to be redefined and, therefore, the validity of many arguments already proved have
to be supervised later on. As in Chapter 2, special attention has to be paid to the
relationship and order of choice of the different constants. Here, two new constants are
needed: The constant K introduced in Chapter 1 when the adequate unfolding of f,
is stated and the constant b. K only depends on A and almost every constant arising
from Chapter 2 depends on it. The constant b depends on the remaining constants,
is the last one to be selected and is chosen sufficiently small in each argument.

Once the expansiveness of the orbit of the critical points is achieved, which co-
rresponds to the longest part of the proof of Theorem B, the density of the orbit
of the critical point of generation zero is demonstrated for a set of parameters with
positive Lebesgue measure, say €. Since € does not depend on m, provided that m is
sufficiently large, we deduce the coexistence and persitence of any number of strange
attractors.

The book ends with the exposition of some numerical experiments.



Chapter 1

SADDLE-FOCUS
CONNECTIONS

In this chapter, we consider autonomous differential equations in R3

T = —pz+wy+ P(z,y,2)
¥y = —wz — py + Q(z,y, 2) (1.1)
z =Xz + R(z,y,2)

where p, A and w are positive real numbers and P,Q and R are sufficiently smooth
maps, vanishing together with their first order derivatives at the origin. Then, the
origin 0 is a fixed point of the saddle-focus type, with eigenvalues A and —p + wi.
Under linearizing assumptions, the flow in a neighbourhood of 0 is given by

z(t) = e (o coswt + yp sin wt)

y(t) = e P (—zosinwt + yo coswt) (1.2)

2(t) = zpeM

In a more general framework, we now consider a sufficiently smooth family of
vector fields
fi(mx) €I xR — f(u,x) €R?,

where I is an interval of parameters and, for each pu € I, f(u,x) is a vector field of
type (1.1). We also assume that for every u € I, f(u,x) is topologically conjugated
to its linear part in a neighbourhood U of 0, [6].

These families unfold interesting dynamic behaviours when there exists a homo-
clinic orbit to @ for some value of the parameter u. Thus, we choose P,Q and R in
such a way that f(0,x) has a solution p : t € R — p(t) € R3 satisfying that p(t) — 6
as t — +oo. This solution defines a homoclinic orbit 'y = {p(t) : t € R}.

In order to describe the dynamics near I'y, a return map can be defined on a

certain rectangle Iy contained in the set {(z,y,z) € U:z =0,y >0,z > 0}. This



