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Preface

Three years ago I was asked by the chairman of the Engineering and Applied
Science Department at Yale University to develop an introductory computer-
applications course that would have broad appeal to students in both the
humanities and physical sciences. The present volume, which emphasizes
material of general interest, is one result. A one-term course incorporating the
present material has been given for three years under the title ““The Computer
as a Research Tool” and has been taken by students ranging from freshman
English majors to graduate students in chemistry.f Much to the author’s
surprise and personal gratification, the course made the “Ten Best” list twice at
Yale during this period.¥ Most students taking the course had had (or were
taking concurrently) at least one term of calculus. Beyond that, there was no
real common denominator. It should be emphasized, however, that a prior
knowledge of calculus is not a prerequisite for the present material and that
nearly everything in the present book should be fully comprehensible to
students with a mathematics background consisting only of high school algebra
and trigonometry. The more difficult mathematical sections occur near the ends
of Chapters 2 and 3, are clearly marked, and may easily be omitted. Both
programming and conceptual difficulties increase gradually within chapters and
from one chapter to the next. Chapters 1 through 3 are intended as introductory
background material for the main part of the course, which is contained in
Chapter 4.

+ The course at Yale also contained material on dynamics, random processes, Fourier series,
and electronics that is available (together with the present chapters) in a more complete book by
the author, Scientific and Engineering Problem-Solving with the Computer, (published by Prentice-
Hall, Inc.). Of necessity, the Yale course covered the present material in highly abbreviated form.
However, the present book can be the basis of a very substantial introductory one-term course for
humanities students.

t Yale Course Critique (published by the Yale Daily News, New Haven, Conn.): 1974 edition,
pp- 7. 43; 1975 edition pp. 13, 71.
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Although the chapters are labeled according to subject matter, they are also
organized according to programming technique:

Chapter Techniques Emphasized
1 Elementary programming in BASIC
2 Series summation and matrix operations
3 Teletype plotting and graphic displays
4 Character coding and printing

The structure of the book is also based on the belief that the best way to
teach students computational methods. is to give them lots of interesting
problems of gradually increasing difficulty. I chose BASIC as the main pro-
gramming language because it is rapidly learned and “conversational.” It is also
efficient enough to work effectively within minicomputers. Students who have
never touched a computer terminal can start right off doing meaningful
problems in BASIC, and the frustrations associated with batch processing are
totally avoided. Under these conditions, the students teach themselves to a
large extent and one merely has to be available to give general guidance and
help them out of occasional pitfalls.

The problems are given immediately after the relevant discussions in the
text and where possible have been based on unusual events of general and
social interest. An effort was also made to select nontrivial problems. Apart
from introductory examples in each chapter, the remaining problems are of a
type that would either be impossible or prohibitive to solve without a compu-
ter. For the same reason, most topics and problems discussed in the present
book are rarely treated quantitatively in the normal curriculum.

An attempt has been made to try to choose material that would alternate in
appeal between humanities and science students. Although it is very hard to
please both groups simultaneously, one can play a game in which important
methods in science are applied to problems of social importance. Also, the
author has tried throughout the manuscipt to provide occasional bits of comic
relief. However, what sometimes seems hilariously amusing late at night does
not aiways withstand the cold light of dawn.

Credit for the course at Yale was based entirely on the completion of
assigned problems (about two or three a week) and a term research project.
For the latter reason, Research Problems are occasionally suggested through-
out the book with the object of stimulating further independent work on the
part of the student. The standard problems are presented to illustrate what can
easily be accomplished in a specific area in one afternoon through the expendi-
ture of a few dollars in computer time (if you have to pay for it). Nearly all of
them can be done on a minicomputer with a memory of only 16,000 16-bit
words. However, the more meaningful ones are much too difficult for use on
examinations, and the whole concept of an examination seemed pointless. I
think the ability of a student to solve 30 formidable problems over a period of
one term is the most important measure of his or her grasp of the subject.
However, tastes vary on this point and the above approach to the grading
question involves a massive investment in time spent examining program
listings and problem results handed in by students. In this connection it helps to
encourage the students to document their programs right from the start. One
does not usually need formal flow charts, but an occasional comment in the
margin of a program becomes very helpful. It is also desirable to encourage
students to think through their problems carefully before going near a terminal.

There are various ways in which the material can be emphasized and
presented within a one-term course, and abstracts have been included at the
start of each chapter to aid in this process. Most students I have encountered
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had never done any real programming, and I constructed the first three
chapters as an introductory technical background. Chapter 1 is for students
without previous exposure to computers and could easily be skipped (or
covered very rapidly) by students with prior computing experience. I have
usually covered this material in one week of lectures and left most of it to be
read by beginning students as needed and learned through the mechanism of
problems assigned the first day. (An immediate assignment of four or five
problems also serves the useful purpose of encouraging students who do not
want to do any work to drop the course.) The material by Kemeny and Kurtz
written on BASIC (see References to Chapter 1) is very useful at this point, if
available. Also, it is assumed that a manual on BASIC provided by the
individual computer service will be available for occasional reference. How-
ever, a primary objective was to make the present book self-contained. (It
seems unfair to expect students to have to buy more than one book for a
course.)

Chapter 2 covers a number of routine programming techniques and reviews
some aspects of high school algebra and introductory calculus (particularly
derivatives and Taylor series) which provide useful insight regarding the
function statements built into the BASIC language. It is also desirable to have
students start getting used to vectors and matrices as early as possible so that
the mechanics of using them does not become a stumbling block in the later
applications involving more difficult subject matter. For this reason, I have
chosen to sneak up on the MAT commands in BASIC by first using them in the
Ramanujan problem to store and manipulate data, and then to gradually
introduce more complicated MAT operations in succeeding sections. By the
time the student gets to the discussion of the input-output theory in economics,
he should not only be used to using matrices but also have a genuine
appreciation for the tremendous power of MAT commands.

Chapter 3 in its entirety is not essential to the rest of the book. How-
ever, most students love plotting things, and such techniques can provide
helpful insight to the solution of difficult problems later. The chapter presents a
survey of representative methods and devices that are currently available. The
material on teletype plotting can be covered within about two weeks, and this
material (or its equivalent, using high-resolution displays) is all that is really
required for the rest of the book. What one specifically does beyond teletype
plotting will be limited by available hardware. However, computer-controlled
high-resolution display devices are becoming increasingly available, and it
seemed clear that at least some discussion of the use of representative hard-
ware should be included. The minicomputer owner, in particular, is in a
position nowadays where such things may be implemented cheaply.

Many of the problems depend on substantial blocks of data being available
in the BASIC DATA format. Because little educational benefit results from
typing in these huge blocks of data by hand and needless amounts of terminal
time get wasted in the process, it is desirable to make these DATA statements
available to the students on punched tape or within disc files. To facilitate this
process, the author will try to provide, at a reasonable cost, punched tape
listings of such BASIC DATA statements in ASCII code. However, this offer
is made subject to the condition that it may be terminated at any time should
the process become impractical. Further, occasional errors made in the
mechanical punching process will have to be corrected by the purchaser (for
example, by checking against listings illustrated in the present book). For
further information regarding this question, write directly to the author,
Department of Engineering and Applied Science, Yale University, New
Haven, Connecticut 06520.

WILLIAM RALPH BENNETT, JR.
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Most electronic computers count, add, subtract, multiply, divide, and do
logic operations in base 2. The reason is fairly obvious: The binary numbers 0
or 1 can be very naturally represented by opening or closing a switch. In
practice, computers use electronic circuits that have two stable operating
conditions to represent such binary numbers. The transition from one stable
point to the other is induced electronically and is analogous to changing the
state of a two-position switch. This type of electronic switching can be
accomplished in astonishingly short time intervals (= 107" second at the present
state of the art) and is the primary technology upon which contemporary
high-speed digital computing rests.

If you have a sufficiently long row of ON/OFF switches, you can use them
to represent any specified binary integer. For example, the binary number 1010
corresponds to the number

1x23+0x22+1x2'+0x2°=8+2=10

in base 10 and may be represented by four ON/OFF switches. The process of
handling numbers that are not integers involves utilizing negative powers of 2
(i.e., those which could be stored to the right of the binary point) in much the
same way that decimal numbers are normally handled in base 10.

Processes in binary arithmetic can be performed by simple electronic
circuits in which the output voltage is a two-valued function of two separate
input voltages. For example, adding two binary integers together involves
applying the following rule to the successively higher, corresponding pairs of
digits:

0+0=0
0+1=1
1+0=1

1+1=0 but carry 1 to the next-higher digit

This fundamental rule in binary addition can be accomplished with a circuit
that is turned ON when either input voltage (digit) is ON separately, but which
is otherwise turned to the OFF position. (People who have done counting
experiments will recognize this type of circuit as an anticoincidence circuit.) The
process of carrying 1 to the next-higher digit (where 1+1=0) can be effected
with a circuit that is normally in the OFF position, unless both inputs are ON.
(People used to counting experiments will recognize the latter as a coincidence
circuit.) The other binary arithmetic operations (subtraction, multiplication,
etc.) can be performed in similar fashion.

The number of operations done in one step (or how long a given
binary arithmetic operation takes) is largely a function of the complexity of the
circuitry in an individual computer. For example, adding N to a given binary
number can be accomplished directly or by adding 1 N times; shifting a binary
number N places to the left (which is equivalent to multiplying by 2") can be
accomplished directly in one step or by shifting by one digit N times; and so on.
Hence the inherent speed of a particular computer is extremely dependent on
the actual circuitry used.

The invention of binary codes and binary logic operations is very old.
Francis Bacon (1561-1626) used binary codes to transmit secret diplomatic
messages. Joseph Marie Jacquard (1752-1834) used binary-coded punchcards
to operate looms with such success that about 11,000 of them were in use
throughout France by 1812. George Boole (1815-1864) developed a
mathematical theory of binary logic during the nineteenth century. Hence the
mathematical background for most of the binary operations used in modern
digital computing was established long before the first digital computer of any
consequence had been built.

11
Binary Codes and Logic



Although a mechanical desk calculator that could add, subtract, multiply, Section 1.1
and divide had been built as early as 1623—by Wilhelm Schikard—the modern Binary Codes and Logic
digital computer was largely a post-World War II development. Prior to that
time, most of the emphasis on electronic machines had been based upon analog
devices—for example, those used during World War II to permit RADAR
control of antiaircraft guns.

The very first digital computers were extremely sluggish, cumbersome things
in which the bistable “electronic” circuits were made up from mechanical
relays. Indeed, one such machine developed at the Bell Laboratories in 1944
contained over 9000 telephone relays, covered a floor space of about 1000
square feet, and weighed about 10 tons!

One of the earliest high-speed electronic digital computers was that de-
veloped under the direction of John von Neumann at the Institute for Ad-
vanced Study in Princeton, New Jersey, during the period 1946-1952. This
device contained several thousand vacuum tubes and used a memory based
upon the continuous rejuvenation of arrays of binary digits which were stored
electrostatically in a large bank of cathode-ray tubes (see Fig. 1-1). Because the

Fig. 1-1. von Neumann’s computer. (John von Neumann is at the left and J.
Robert Oppenheimer is at the right.) Note the bank of cathode-ray-tube storage
elements across the bottom of the picture (within the cylindrical cans); these were
used for the computer memory. Each tube contained a square display of 32x32 =
1024 binary storage bits that were periodically regenerated at about 1000 times
per second. A section from this computer is currently on display at the Smithso-
nian Institution in Washington, D.C. (Courtesy of the Institute for Advanced
Study, Princeton, New Jersey.)



lifetimes of vacuum tubes were typically about 1000 hours, the electrostatic
storage technique was tricky at best, and the entire contents of the memory in
the von Neumann computer had to be re-stored about 1000 times per second,
it is rather amazing that the device could be made to function reliably at
all over long periods of time. Nevertheless, the machine served as an
effective laboratory to test many of the notions of programming and coding
used in contemporary large-scale, high-speed digital computers. Prior to the
design of the von Neumann machine, it was argued that decimal systems were
the most appropriate for computers because of the formidable problems in
decimal-to-binary conversion. One early accomplishment of the von Neumann
project was the demonstration that such conversions could be accomplished
with a fairly small number of machine operations (approximately 47 steps) and
in time intervals of only a few milliseconds (using the circuitry of that period).
The machine was also used to solve some very substantial numerical problems
connected with the development of the hydrogen bomb'—especially problems
involving the inversion of high-order matrices. [See the discussion of the von
Neumann machine by Goldstine (1972). Goldstine worked on many of the
fundamental mathematical and programming problems encountered with this
machine, and his book contains a very interesting account of the techniques
adopted, in addition to a comprehensive description of the historical back-
ground.]

Fig. 1-2. Representative, contemporary minicomputer capable of storing up to
32,000 separate 16-bit numbers in its memory. (Courtesy of the Hewlett-Packard
Co.)

' It is, in fact, rather ironic that J. Robert Oppenheimer, who was the Director of the Institute
for Advanced Study during most of that period and a strong proponent of the von Neumann
project, was crucified shortly thereafter for his initial stand against the development of the
H-bomb. [See, for example, von Neumann’s testimony in support of Oppenheimer reproduced by
the U.S. Atomic Energy Commission (1971, p. 655), regarding the relevance of the von Neumann
computer to the H-bomb project.]

Chapter 1
Introduction



The development and practical availability of transistors (with nearly in- Section 1.2
finite lifetimes) and reliable ferrite core memories (which do not require Machine Language

periodic rejuvenation) had a massive effect on the computer field during the
next two decades. The exponential growth in this field has continued well into
the present decade, as the effects of integrated circuits, circuit-chip technology,
and semiconductor memories have become felt. Not only has the capability,
speed, and reliability increased considerably; the physical size and cost of
electronic digital computers has decreased by orders of magnitude during the
past decade. The latter phenomenon is especially heartening in an age of
constant inflation in the price of nearly every other type of commodity. One
can now purchase for a few thousand dollars a small digital computer (or
minicomputer) which is about the same size as a “hi-fi”” set (see Fig. 1-2) and
which is enormously more powerful than the early von Neumann machine
(which itself cost many hundreds of thousands of dollars and occupied a small
building). Hence it seems likely that we are on the threshold of an age when
the “family computer” will be as realistic and useful an item as the family
automobile has become in American life. At a further extreme, the use of
circuit chips and small memories has permitted the development of pocket-size,
battery-operated computers (which now sell for a few hundred dollars) which
use full-scale digital programming techniques to calculate series solutions for
the transcendental functions to high accuracy, together with the more usual
arithmetic operations. Indeed, at least one of the currently available pocket
computers is capable of retaining as many as 100 fully alterable program steps
(see Fig. 1-3). Thus we are already well into an age where small computers can
extend the mathematical ability of the human brain in much the same way that
hearing aids and electronic guidance devices can extend man’s other perception
capabilities. Immediate access to these powerful computational aids opens up
for solution a new domain of important problems in the same way that a good
pair of eyeglasses can help a near-sighted individual see a larger portion of the
landscape. In fact, one could make a strong argument that access to both small
and large digital computers should be regarded as a fundamental individual
right in our society, much like those guaranteed by the Constitution. The point
here is that society is presently facing such complex problems as to warrant
increased reliance on computer-simulated models for solution. Those people
who do not have access to computers to investigate alternative solutions to
communal problems will, in some sense, have lost their ability to participate in
the democratic process. In any event, digital computers have become easily
available to a large fraction of the population, and there is every indication at
the present moment that this trend will continue.

Most currently available digital computers operate in a manner that is
logically similar to the method devised in the von Neumann machine. A certain
set of possible binary logic operations (typically about 100) is built into the
electronic circuitry of the machine. As part of man’s never-ending desire to
attribute human qualities to electromechanical devices, the convention by
which different sequences of instructions may be fed into the computer is
known as a programming language. (In a similar vein, one finds computer
scientists referring to the rules for applying such languages as grammar; the
storing capacity of the computer as memory; the various multiple-bit numbers
stored in the memory as words; and so on.) Access to the rudimentary set of
binary logic operations wired into the computer is obtained through something
known as machine language. A program in machine language just consists of a
sequence of large binary numbers, which are consulted in order when the
computer runs. Each memory location in the computer can store a word
containing a large number of binary digits, or bits. In the section of the
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Fig. 1-3. Pocket-sized battery-operated
digital computer capable of holding 100
reprogrammable statements. (Courtesy
of the Hewlett-Packard Co.)

1.2
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computer memory used to store the machine-language program, part of each
word is used to code the machine-language instruction; the other part contains
the memory location upon which the instruction is to operate. In addition, the
computer contains entities known as registers within which the various allowed
binary logic operations are performed. One of these registers is set aside just to
keep track of which memory location contains the next machine-language
instruction to be executed.

Thus a machine-language program consists of an ordered set of instructions
that is sequentially executed, starting at a specified memory (or core) location.
Such programs tend to be exceedingly tedious affairs in which the computer is
led by the hand through every single operation required. For example, the first
instruction might be to take a 16-bit binary number out of one specific memory
location and store it in the A register; the next instruction might be to add the
contents of another memory location to the contents of the A register; the
third instruction might be to store the result (now in the A register) in some
other memory location (whose address might, in turn, have been computed in
still another register); and so on. Generally, an enormous number of machine-
language operations have to be performed before anything very useful is
accomplished. In addition, all these machine-language instructions have to be
entered by some means in the computer memory. (At the most rudimentary
extreme, such sequences of binary numbers can be entered by hand using a
long row of toggle switches to set up each required multiple-bit binary
number.) The great virtue of the computer is that once these instructions have
been entered in the memory, long sequences of them can be done over and
over again with great speed (these days, anywhere from about 30 nanoseconds
to 2 microseconds per machine operation, depending on the particular
computer).

Although the early programmers were forced to write their programs
directly in machine language, most people will find that practice exceedingly
tedious. This is especially true in the routine conversions that come up over
and over again in going back and forth between base 10 and base 2 arithmetic.

Fortunately, some dedicated souls have spent their lives devising machine-
language programs that do all these routine operations for us. Thus higher-
level programming languages, such as FORTRAN, ALGOL, and BASIC, have
been developed that translate standard arithmetic operations back and forth to
machine-language operations in base 2. In addition, these higher-level lan-
guages generally have some standard set of options for getting data in and out
of the computer and a set of subroutines (small, specialized programs that can
be used over and over again at different points in a large program) built in for
the purpose of computing common mathematical operations and functions.

As a specific illustration, the two statements

1 INPUT XY
2 PRINT X+Y

written in BASIC, are fairly self-evident even to someone who has never used
a computer before. The statements have the meaning that when the program is
run in BASIC, two general numbers (X and Y) are entered from the keyboard
of a teletype terminal and the computer then prints the sum of the two
numbers back on the same terminal. In a representative computer (containing
no ‘“hard-wired” arithmetic capability), this relatively harmless-looking two-
line program in base 10 arithmetic takes hundreds of separate machine-
language steps involving logic operations in base 2. Because the computation
would take less than 1 millisecond on even the slowest contemporary compu-
ters, the terminal operator is shielded from all the behind-the-scenes effort that
went into the calculation.

Chapter 1
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