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Foreword

In a typical mathematical model of a controlled distributed parameter process one
usually finds either boundary or internal locally distributed controls to serve as the
means to describe the effect of external actuators on the process at hand. How-
ever, these classical controls, entering the model equations as additive terms, are not
suitable to deal with a vast array of processes that can change their principal intrin-
sic properties due to the control actions. Important examples here include (but not
limited to) the chain reaction-type processes in biomedical, nuclear, chemical and fi-
nancial applications, which can change their (reaction) rate when certain *“catalysts”
are applied, and the so-called “smart materials”, which can, for instance, alter their
frequency response.

The goal of this monograph is to address the issue of global controllability
of partial differential equations in the context of multiplicative (or bilinear) con-
trols, which enter the model equations as coefficients. The mathematical models of
our interest include the linear and nonlinear parabolic and hyperbolic PDE’s, the
Schrodinger equation, and coupled hybrid nonlinear distributed parameter systems
associated with the swimming phenomenon.

Pullman, WA, USA Alexander Khapalov
January 2010



Preface

This monograph developed from the research conducted in 2001-2009 in the area
of controllability theory of partial differential equations. The concept of controlla-
bility is a principal component of Control Theory which was brought to life in the
1950’s by numerous applications in engineering, and has received the most signif-
icant attention both from the engineering and the mathematical communities since
then.

A typical control problem deals with an evolution process which can be affected
by a certain parameter, called control. Normally, the goal of a control problem is to
steer this process from the given initial state to the desirable target state by select-
ing a suitable control among available options. If this is indeed possible, then one
usually desires to achieve this steering while optimizing a certain criterion, solving
what is called an optimal control problem.

Controllability theory studies the first part of the above-described control pro-
cess. Namely, given any initial state, it studies the richness of the range of the
mapping: control — state of the process (at some moment of time).

Controllability theory was originally developed in the 1960’s for the linear or-
dinary differential equations, governed by the additive controls. Later, since the
1970’s it became the subject of keen interest for the researchers working in the
area of partial differential equations as well. As a result, nowadays there exists a
quite comprehensive controllability theory for the linear pde’s governed by the ad-
ditive controls which can act inside the system’s space domain (locally distributed
or point controls) or on its boundary (boundary controls). In such context, the re-
spective mathematical methods are essentially the methods of the theory of linear
operators, particularly, of the duality theory.

In this monograph, however, the subjects of interest are the multiplicative con-
trols that enter the system equations as coefficients. Therefore, the aforementioned
control — state of the process mapping becomes highly nonlinear, even if the
original pde is linear. This gives rise to the necessity of developing a different
methodology for this type of controllability problems.

In this monograph we address this issue in the context of linear and semilinear
parabolic and hyperbolic equations, as well as the Schrodinger equation. Particular
attention is given to nonlinear swimming models. In the introduction we discuss the
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motivation for the use of multiplicative controls as opposed to the classical additive
ones, and compare the mathematical methods involved in the respective studies.
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Chapter 1
Introduction

1.1 Controlling PDE’s: Why Multiplicative Controls?

[n the mathematical models associated with controlled distributed parameter
systems evolving in bounded domains two types of controls — boundary and in-
ternal locally distributed — are typically used. These controls enter the model as
additive terms (having in mind that the boundary controls can be modeled by mak-
ing use of suitable additive Dirac’s functions) and have localized support. The latter
is either a part of the boundary or a set within the system’s space domain. Such
control can, for example, be a source in a heat/mass-transfer process or a piezoce-
ramic actuator placed on a beam. Publications in this area are so numerous that it is
simply impossible to mention them all here — allow us just to refer the reader to our
very limited bibliography below, associated mostly with the immediate content of
this monograph and to the references therein.

In terms of applications it appears that the above-mentioned classical additive
controls can adequately model only those controlled processes which do not change
their principal physical characteristics due to the control actions. They rather de-
scribe the affect of various externally added *“alien” sources or forces on the process
at hand. This limitation, however, excludes a vast array of new and not quite new
technologies, such as, for example, “smart materials” and numerous biomedical,
chemical and nuclear chain reactions, which are able to change their principal
parameters (e.g.. the frequency response or the reaction rate) under certain purpose-
fully induced conditions (“catalysts™).

The intent of this monograph is to address the just-outlined issues in the context
of global controllability of partial differential equations through the introduction
and study of multiplicative (also known as bilinear) controls. These controls en-
ter the system equations as coefficients. Accordingly they can change at least some
of the principal parameters of the process at hand, such as, for example, a natu-
ral frequency response of a beam or the rate of a chemical reaction. In the former
case this can be caused, e.g., by embedded “smart” alloys and in the latter case by
various catalysts and/or by the speed at which the reaction ingredients are mechani-
cally mixed. Our main goal in this monograph is to introduce a new controllability
methodology suitable for the study of linear and nonlinear pde’s in the framework
of multiplicative controls.

A.Y. Khapalov, Controllability of Partial Differential Equations Governed 1

by Multiplicative Controls, Lecture Notes in Mathematics 1995,
DOI 10.1007/978-3-642-12413-6_1, (© Springer-Verlag Berlin Heidelberg 2010
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It is also important to notice that currently there are only very few publications
available in the area of controllability of distributed parameter systems by means
of multiplicative controls. This is in a very sharp contrast with the corresponding
research in the framework of ordinary differential equations where many interesting
results were obtained for the period of several decades now (see, e.g., the survey [5]
and remarks on bibliography in the end of this introduction).

Let us give now several examples of important applications motivating the use
of multiplicative controls in the framework of pde’s. As the reader will see later,
different types of pde’s give rise to different concepts of controllability. (In other
words: “What is the “right question” to ask here?)

Example 1.1 (The nuclear chain reaction). This chain reaction is characterized by
the fact that the number of particles of the diffusing material increases by the re-
action with the surrounding medium. For example, a nuclear fission results from
the collision of neutrons with active uranium nuclei, which leads to the occurrence
of new neutrons whose number is greater than one. These neutrons, in turn, react
with active nuclei in the same way and hence the number of neutrons increases. If
this process is treated approximately as a linear diffusion process, we arrive to the
following (simplified) equation:

u = a*Au+ v(x,t)u, (1.1)

where u(x,t) > 0 is the neutron density at point x at time ¢ and v > 0, since the chain
reaction is equivalent to the existence of sources of diffusing materials (neutrons)
proportional to their concentration (neutron density).

In a nuclear plant the chain reaction is typically controlled by means of so-called
“control rods,” which in turn can absorb neutrons. In equation (1.1) this can be
associated with the change of the value and sign of the coefficient v, which thus can
be regarded as a multiplicative control.

Note that, if one wants to use the traditional additive control to describe the above
fission model, then this would lead one to an equation like

u = atAu+ v(x,t),

where v(x,t) is the additive locally distributed control. In terms of applications, this
type of control would amount to controlling the chain reaction by somehow adding
into or withdrawing out of the chamber at will a certain amount of neutrons, which
is not realistic.

A similar modeling approach applies to numerous biomedical, chemical and
heat- and mass-transfer reactions and other processes (e.g., arising in the popula-
tion dynamics and financial mathematics), involving various types of “catalysts.”
The corresponding models can also be nonlinear.



I.1 Controlling PDE’s: Why Multiplicative Controls? 3

Example 1.2 (Biomedical applications). The following system of nonlinear equa-
tions models the interaction of leukocytes and “invading” bacteria in a cell (see [3]
and, e.g., [60], p.499).

Denote by u,y and z respectively the leukocyte, bacterial, and attractant concen-
trations. Then we have the following:

I. Bacteria diffuse, reproduce, and are destroyed when they come in contact with
leukocytes:
Vi = Uy + (k) — kau)y. (1.2)

2. The chemoattractant is produced by bacterial metabolism and diffuses:
% =Dz + k},\"- (1.3)

3. The leukocytes are chemotactically attracted to the attractant and they die as they
digest the bacteria, so that

uy = Jy + (kg — ksy)u, (1.4)
where J = kqu + k7uz, 1s the leukocyte flux.

In the above k;,i = 1,...,7 and D are various coefficients, and equations (1.2)—
(1.4) are complemented by a set of boundary conditions — we refer to [60] for details.
The question of interest here is — if and when the leukocytes can successfully fight
against a bacterial invasion (again see [60] and the references therein for different
ways to approach this issue). One can try to analyze this very challenging nonlinear
problem as a controllability one with the goal to achieve the steering to a suitable
cquilibrium by means of (some of) the coefficients &;’s treated as bilinear controls.
The corresponding control actions can be interpreted, e.g., as the use of a drug to
create the conditions (that is, to change the reaction rate) such that bacteria will die.
(To the contrary, the use of traditional additive controls would mean that one has
an option to add into or withdraw out of the given cell some leukocytes or bacteria,
which does not seem realistic.)

Example 1.3 (Non-homogeneous bilinear system). Denote by u(x,t) the tempera-
ture of a rod of unit length at point x at time . Then the following model describes
the heat-transfer in this rod in accordance with Newton’s Law (e.g., [142]):

uy =y +v(u—0(x,1)) in Qr =(0,1)x(0,T), (1.5)
w=0 in Zr, ul—o=ucL}Q).

Here the term v(u — 6(x,t)) describes the heat exchange between the rod and the
surrounding medium of temperature 0 (x,r). We can regard v as a bilinear control.
It is known that v is proportional to the heat-transfer coefficient, which depends
on the environment, the substance at hand, and its surface area. Note that in this
cxample the “mathematical boundary” in the corresponding initial and boundary
value problem is not the same as the actual physical boundary of the body.
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Non-homogeneous models as in (1.5) arise also in many other applications
dealing with the heat- and mass-transfer. If the heat (mass)-transfer involves flu-
ids (air), the corresponding bilinear control v also depends on the speed of the
fluid. The latter can be controlled in some applications by the induced magnetic
field. Alternatively, the surface area can be changed when the substance at hand
is a polymer (e.g., a planar array of gel fibers can be controlled to maximize the
surface area exposed to the surrounding fluid). Also, we refer to the so-called
“extended” surface applications (“smartly”” added/controlled fins, pins, studs, etc.)
when one wishes to increase/decrease the exchange between the source and ambient
fluid.

Example 1.4 (Variable vibration response). An important practical example here
is the SMA-composite beam containing NiTi fibres that can change its vibration
response when heated by an electrical current (this can be interpreted as a vari-
able load).

We found only two early references related to the area of bilinear controllability
for the linear wave and beam equations. Namely, in the pioneering work [8] by
J.M. Ball, J.E. Marsden, and M. Slemrod the approximate controllability of the rod
equation

Uy + U + V(e =0
with hinged ends and of the wave equation
Uy — Uy + V(D=0

with Dirichlet boundary conditions, where v is control (the axial load), was shown
making use of the nonharmonic Fourier series approach under the additional “non-
traditional” assumption that all the modes in the initial data are active. The results
of [8] are discussed in detail in Chapter 9 below.

We also refer to [90] further exploring the ideas of [8] in the context of simulta-
neous control of the rod equation and Schrédinger equation.

Example 1.5 (Multiplicative controllability of the Schrodinger equation). This
equation arises in such modern technologies as nuclear magnetic resonance, laser
spectroscopy and quantum information science.

Let us give an example of a possible setup of multiplicative controllability
problem for the Schrodinger equation due to Rouchon [131], Beauchard [11], and
Beauchard and Coron [16].

Consider a quantum particle of mass m with potential V' in a non-Galilean frame
of absolute position D(¢) in R'. It can be represented by a complex-valued wave
function ¢ (t,z) which solves the following Schrodinger equation:

20 n’ 9%¢

i) = ——2¢
“(91< ) 2m dz?

(t,2) + V(z—D(1))¢(t,2). (1.6)
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With a suitable change of variables (see [16]) and assuming that m =1 and h = 1,
cquation (1.6) can be re-written as follows:

0 192
ia_!:’(”") - *5—%;.5.’('7@ + (V(x) —u(t)x)y(t,x), (1.7)
where u(t) = —D(t). Equation (1.7) describes the nonrelativistic motion of particle

with potential V in a uniform electrical field r — u(t) € R, which can be viewed as
a multiplicative control.

Recently, a substantial progress has been made in the study of controllability
properties of (1.7), see [11,12, 14,16, 18,26, 35, 124] and the references therein. We
discuss these results in Part IV below.

Example 1.6 (Swimming phenomenon). The swimming phenomenon is undoubtedly
among the most interesting mathematical problems arising in the fluid mechanics.
We discuss this very intriguing phenomenon from the multiplicative controllability
viewpoint in Part I11.

1.2 Additive Controls vs Multiplicative Controls:
Methodology

Let us try to highlight, in an informal setting, some of the principal differences
between additive and multiplicative controls in terms of approach to the concept of
controllability itself and of the mathematical methods which are typically used to
study the respective properties.

1.2.1 Additive Controls

Consider the following abstract evolution equation governed by an additive control:

dy(t)
dt

y(0) =yo€H.

= Ay(t)+Bv(t), t€(0,T), T >0, (1.8)

Here A is a self-adjoint operator with dense domain in the real Hilbert space H,
generating a C semigroup of bounded linear operators on H, v € L*>((0,T);V) is
control with values in the Hilbert space V and B: V — H is a linear bounded opera-
tor. Let us assume that we are interested in the study of controllability properties of
solutions to (1.8) in C([0,1]; H).



