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PREFACE

In connection with the "Philosophy of Science" research

program conducted by the Deutsche Forschungsgemeinschaft

a colloquium was held in Munich from 18th to 20th May 1979.

This covered basic structures of physical theories, the

main emphasis being on the interrelation of space, time

and mechanics. The present volume contains contributions

and the results of the discussions. The papers are given

here in the same order of presentation as at the meeting.
The development of these '"basic structures of physical

theories" involved diverging trends arising from different

starting points in philosophy and physics. In order to obtair

a clear comparison between these schools of thought, it was

appropriate to concentrate discussion on geometry and

chronology as the common foundation of classical and quantum

mechanics. As a rather simple and well prepared field of

study, geochronometry seemed suited to analysing these

mutually exclusive positions.
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INTRODUCTION

The distinct positions present at the symposium may be
roughly divided into three schools that differ in their
philosophical interpretation of physics and their meta-
theoretical conception of what a physical theory is or
should be: (1) The Constructivism of the Erlanger Proto-
physics (P. Lorenzen, P. Janich), (2) the Structuralism
within the Analytical Philosophy of Science (P. Suppes,
J.D. Sneed, W. Stegmiiller), and (3) the Marburg Physics
Theory (G. Ludw1g)

(1) As a protagonist of constructivism, the "second
Erlanger program" tries to give a normative foundation of
the sciences, including physics, which originates from
every—day exper1ence (Lorenzen and Schwemmer 1975, Janich
1980). Its aim is to adopt an immediate, theory-independent
approach which leads from the prescientific experience of
civilized mankind with handicrafts, to a normal language
and conceptual system covering basic notions of science.

The norms necessary to characterize the basic cangepts are
required to initiate prescriptions and manual pracedures

which deliver artifactual realisations of these véry norms,
which all include standard etalons and gauges. The intention
is to establish constructively all the fundamental concepts

of lenght, duration, inertial mass and electric charge.

The protophysical concepts of action, experience and norm
serve as indisputably given basic terms which are assumed

to have a theory-lndependentx prescientific adequacy. This
prephysical program aims at a non- -circular and purposive
foundation of physics in the framework of Protophysics

that - surprisingly enough — turned out to be antirelativistic.
Consequently, protophysical statements are supposed to be
valid beyond all scientific experience. In its pwn view,
Protophysics professes to be a certaln kind of formal

pret. cory for every physical theory, in which basic concepts
may be operationally defined, and manufacturlng norms should
uniquely determine the construction of measuring instruments.

Recerntly , however, more substantial aspects have arisen

X
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in the protophysical analysis of real physical theories.
Within the very basic concept of a process, Protophysics

now seems to distinguish between physical courses and
purpose-directed human operations. Physical courses have
features that are not influenced by human actions, but are
uniquely determined by ngtural regularities. There are thus
situations in which the handicrafts performance of a proto-
physical norm depends not only on the individual ability of
the craftsman but also on the compatibility with some real
structure of the environment. This plausible statement is
based on the well known physical fact, that it is not

usually true that "matter can be compelled to adapt itself
to ideal norms" (Lorenzen und Schwemmer p. 236). Consequently,
the possibility or validity of norms is restricted by physical
experience. At the same time a remarkable mitigation of the
antirelativistic position was proposed by its co-originator,
P. Janich - at least in the case of special relativity -
which now seems compatible with a normative foundation,

(2) The second school, the structuralism of the
analyiical philosophy of science, may be called an informal
conception relative to the formal approach of the so-called
Statement-View (Stegmiiller 1979, §1). Carnap and the other
protagonists of this older philosophy tried to get a rational
reconstruction of scientific theories by means of a formal
language and an axiomatic set theory. This formalistic
approach, however, is burdened with extensive complications
which already arise within the formal reconstruction of
mathematics. As we have known since Frege, Peano, Russel
and Whitehead, and Hilbert and Skolem, even small proofs
in the theory of sets are so profuse in formal language,
that the foundations of more complex branches are hardly
workable in this style. But if the formalized text of the
syntax is enlarged by the introduction of new notions and
additional rules, the resulting language is more manageable.
This is an essential feature of, for example, Bourbaki's
presentation, in which formalized language has been condensed
to a more ordinary level, the usual language of all mathematical
texts in practice (Bourbaki 1968). In this manner Bourbaki
constructed a rather rigorous fondation for most of
contemporary mathematics. This could serve as an example and %
as a tool for the philosophy of physics.

In the fifties, P. Suppes started with usual or ordinary
language of mathematics to reconstruct the mathematical-part
of a physical theory (Suppes 1957). Without particular
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elaboration of the formalized language and set theory
(ef. Scheibe 1981), he introduced so-called set theoretical
predicates, which in any example are defined by a vocabulary
of condensed mathematical notions, yielding his informal-
syntactical approach. With these predicates, the mathematical
part of a physical theory is represented by a class of
structures which are finite tuples of sets, relations and
functions. Later, Suppes' approach was enlarged by J.D. Sneed
with so-called informal-semantical methods (Sneed 1971). In
this more "model theoretic" view Sneed separates two levels,
corresponding to a distinction between empirical and theo- -
retical domains (called 'non-theoretical' and 'theoretical'
in relation to the given theory). These domains are re-
presented by classes of so-called partial possible models
(M__) and possible models (M ), which again are characterized
bypget theoretical predicateg. In the empirical domain, the
members of M contain only structures (sets, relations)
defined and Bﬁysically clarified in predecessor theories.
The essential feature of the empirical part is a certain
subclass of M - the intended applications - whose important
members may cggréspond_to paradigmatic examples and crucial
experiments of the physical theory. In the domain of the
possible models new concepts are introduced by "theoretical"
relations. Roughly speaking, they describe the new physical
aspects of the theory relative to its pretheories, i.e.
its genuinely novel features. Those members of M_ which
obey the physical laws are called models of the.gheory.
The two domains are connected by a projection from M_ to
M__ which simply omits the theoretical relations. Figally,
cBPtain theories combine to yield a theory tree connected
by the intertheoretical order relation of model theoretic
inclusion which represents a kind of superstructure on the
class of all theories (net-structure). This informal
structuralistic view "gllows a constructive criticism and
a partial vindication of the philosophies of Kuhn and
Lakatos" (Stegmiiller 1979, p. 14).

(3) In contrast to the philosophical attempts mentioned,
G. Ludwig's Physics Theory has been developed from physical
problems - a metatheoretical by-product, as it were, derived
from the axiomatization of quantum theory (Ludwig 1970). As
is well known, the treatment of foundational questions in
physics often produces rough drafts of metatheories. These
physical answers to the philosophical question "What is
physics?" have a long tradition including such famous
exponents as Aristotle, Galileo, Newton, Leibniz, Mach, Duhem,
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Poincaré, Einstein and Heisenberg.
An essential part of Physics Theory's mathematical
dressing was fashioned by Nicolas Bourbaki, a pseudonym for
a group of young French mathematicians who started their
famous "Eléments de Mathématique" in the winter term of
1934/35. In the more than 20 volumes which have appeared
to date, Bourbaki consistently employed the so-called
axiomatic method and created something like the Euclid of
the 20th century. This foundation of mathematics sums up
the pioneering efforts of many celebrated mathematicians.
For example, the works of Riemann, Dedekind, Cantor, Poincaré,
Hilbert, Fréchet, Brouwer, Hausdorff and others were necessary
to obtain that concept of a topological space which we can
find in the lucidly and elegantly codified form of Bourbaki.
.The idea of the axiomatic foundation and presentation is
simple. A mathematical object is not conceived by an explicit
construction and not described by an ad hoc procedure peculiar
to its specific nature; instead, it is presented as thHe
combined result of a number of more general features or
structures, each of which may also be found in other objects.
The concrete concept is produced as a synthesis of more
abstract notions. For example, the real line is defined
as the commutative number field which has a continuous
ordering. Explicit constructions are only needed for proofs
of existence, being the self-consistency of the implicit
definition. Some properties of the real number are thus
already treated in the more.general domains of algebraic
(especially group theoretical) structures, others within
the context of topological structures, or among order
theoretical structures. The very combination of these parental
qualities yields, to be sure, some novel features peculiar
to the concept of a real number. But the axiomatic architec—
ture leads to a much deeper understanding of the relations
between the various mathematical disciplines, and they are
presented in a unified form. According to Bourbaki, a
mathematical theory is a species of structures: a relation,
typified on the echelon above some principal and auxiliary
sets, together with transportable axioms (Bourbaki 1968,
Iv, § 1.4). On this basis, special insights may easily be
transported to other mathematical branches. Mathematics has
been given a quite remarkable boost by the systematic use
of the axiomatic method as practised on a grand scale by
Bourbaki. . )
Furthermore, what is even more important in our context,
Bourbaki helped to clarify what contemporary mathematics,
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with its remarkable standard of rigor, really is. The
philosophy of physics is well advised to accept this formal
paradigm. We need not, for example, discard the law of the
excluded middle, or the axiom of choice, as most construct—
ivists would have us believe. A mathematical "axiom" or
postulate is nothing but part of the nominal definition of
an abstract structure which does not need any concrete
interpretation. Mathematics is independent of physics and
is prior to all laws. The notion of geometry should thus
be split into mathematical geometry as a descendant of
topology, and physical geometry together with chronometry
as the zeroth chapter of mechanics.

In this respect, Ludwig's Physics Theory may be regarded
as a program for physics, somewhat analogous to that of
Bourbaki's for mathematics. Clearly, unlike in theoretical
mathematics, physical concepts are submitted to empirical
interpretation, and they need additional characterization
describing the correspondence to real objects and experimental
results.

The first step of Ludwig therefore takes the following -
direction. Each well formulated physical theory PT consists
of three parts: a mathematical theory MT, a domain of -
reality W, and a correspondence (—) between MT and W; in
short, we have the identification PT = MT(—)W. Here, MT.
is a theory in the sense of Bourbaki, a structure which is
richer than the theory of sets (an appropriate species of
structures). Yet the empirical correspondence is not a
mapping; it is more like a many-many relation because, in
general, certain elements of MT are related to various
physical states. This blurred kind of assignment reflects
the typically physical situation where the mathematical
results of PT do not tally exactly with the corresponding
experimental results.

The second step allows for the fact that some phy51cal
concepts cannot be defined independently of PT since the
physical content of PT is not completely exhausted by the
components MT, (——) and W. For example, the force fields
of electrodynamics, the dissipation notions of thermodynamics,
and the state concepts of quantum theory are theoretical
relations which can only be given physical interpretations
if the whole physical theory is used. This foundational
problem of physical concepts, the so—called problem of
theoretical terms, is answered in Ludwig's view by restrict-
ion of the domain of reality W to a subdomain. This subset
G of the given facts has to be selected in such a way that




" of Physics Theory.

xiv INTRODUCTION

the physical concepts of MI(——)G can be defined independently
of PT, and that the theoretical content of PT, corresponding
to the domain of reality, may already be built up with
MT(—)G. :

) We are not going to present a detailed representation of
Ludwig's Physics Theory (cf. Ludwig 1978 or the short account
of the L-program in Hartkimper and Schmidt 1981). Let us just
mention two aspects which may indicate the physical adequacy

Imprecisions are a fundamental fact of life in physics:
Results of measurements hold only within a certain range of
accuracy, which precludes the empirical correspondence from
becoming an exact mapping. Moreover, a mathematical theory
trying to picture reality is not a precise representation of
the world, and we cannot single out one approximating scheme.
In Ludwig's approach the various concepts of imprecision are
described by one mathematical tool, the uniform structure
imposed on the base sets of MI. By canonical extensions of
the uniform structure to power and product sets, the defined
relations of PT are endowed with uniformities which may
scharacterize the properties of the imprecisions. In addition,
this imprecision structure plays a fundamental role in the
comparison of theories, particularly in the case of
approximative reduction and embedding, so typical of all
theoretical physics.

In the second aspect we return to the problem of the
foundation of physical concepts. Is it possible, by the
axiomatic method of structure species, to ensure a physical
interpretation of theoretical relations? Physics Theory offers
a simple criterion for solving this problem. Let us assume
that in MT the (principally) undefined base sets and structures
are interpreted by known physical concepts; for example,
they may coincide with the interpreted sets and structures
of a pretheory. Such a form of MT is called the axiomatic
base of PT. (It is certainly not a trivial task to find,
for an arbitrary PT, a physically equivalent form which
satisfies the conditions of an axiomatic base.) Now, a new
structure deduced in (the axiomatic base representation of)’
MT will get a physical interpretation. It is uniquely
determined by the interpreted sets and relations which
are used for the deduction. If there are certain interpreted
relations of MT and corresponding measurements which can be.
combined to yield an indirect measurement of the deduced
structure, it is reasonable to say that the structure
represents a set of real physical facts. This may justify




INTRODUCTION xv

calling it =n established physical structure or a new
physical concept (cf. Ludwig 1978, § 10.5).
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Glinther Ludwig

IS THE GEOMETRY OF PHYSICAL SPACE A FORM OF PURE
SENSIBLE INTUITION? A TECHNICAL CONSTRUCTION?
OR A STRUCTURE OF REALITY?

In this paper we shall not be able to present a complete or
definitive answer to the above question. We only attempt to
examine this question without prejudice and we shall not make
the claim that only one of the above three possibilities is
correct. In fact, we find that each of these viewpoints has

a certain justification. We shall attempt to clarify this
problem by examining the relationships between these three
viewpoints.

We wish to confine the problem to the case in which Eu-
clidean geometry can be used to describe the geometry of the
real space - that is - we shall not consider problems concer-
ning "cosmology" or "black holes".

§ 1 Three extreme viewpoints

In my opinion each of following three extreme viewpoints 1
to III is incorrect.

I) Euclidean geometry is nothing other than a form of pure
sensible intuition which is a "necessary basic requirement"
for all physics. We leave open the question how human beings
may have gained this form of pure sensible intuition, whether
this form was gained during evolution by natural selection or
was gained in the first years of our life, or is a form im-
pressed in our mind. As a ‘''necessary basic requirement" we
mean that Euclidean geometry will be a necessary structure
for the formulation of experience.

The following two arguments can be raised in opposition
to this opinion:

1) In the history of physics we have found that it is possib-
le %o use non-Euclidean geometries in physics. On the other
hand it is not possible .to see how we are able by pure sen-
sible intuition to state whether a physical realization of a
plane - obtained for example by means of a ''grinding proce-
dure of three plates'" - corresponds to an intuitive plane. In
other words: How are we be able to determine whether a geo-

1
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2 GUNTHER LUDWIG

 metric figure obtained by technical procedures corresponds to
our intuitive notions.

2) The discussion of problems in the foundations of mathema-
tics has weakened our faith in intuition. We no longer be-
lieve that it is possible to verify the axioms of Euclidean
geometry by intuition - that is - we are not convinced by in-
tuition that Euclidean geometry is internally consistent. For
example we are not convinced that there can be only one line
passing through a given point which is parallel to a given
line. By intuition we cannot exclude the possibility that

there exists a finite range of angles (see fig. 1) for straight

—————— T

Fig. 1

lines passing through a given point which does not intersect
a given straight line. This angle may depend upon the dist-
ance between the given line and the given point.

If we examine our understanding of geometrical figuresit
is not difficult to see that we have developed a certain in-
tuition which is not sufficiently precise that one may de-
duce precise mathematical relationships. For example we have
no intuition for the behaviour of straight lines, planes,
etc. at infinity. Our intuition corresponds to the case in
which only a bounded portion of geometry can be seen, and
the remaining portion cannot be observed.

IT. Another extreme opinion is that Euclidean geometry is a
technical constructed structure which is used to obtain

a reference system for the description of physical phenomena
and that such constructions are arbitrary as - for instance -
the well known Euclidean maps of our earth. Such maps are
very useful. Nevertheless the Euclidean geometry of the map
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is not identical with the geometry of the surface of the earth.
In physics we are not interested in arbitrary maps of the
space but in the actual ("physical") geometry of the space
regardless of how the actual geometry is determined - from
experience or by other methods.

r
III. The third extreme opinion is as follows: The theorems of
Euclidean geometry may be found in nature, the theorems can
be "read" from nature despite the fact that we know that the
mathematical form of the theorems includes idealizations
about nature. In this sense one believes Euclidean geometry
to be a structure which is present in nature.

It is evidently no simple matter to read the Euclidean
geometry from nature. Realizatioms of geometrical figures
such as straight lines or planes cannot be found in nature,
they have to be "made'. But how do we make such geometrical
figures?« : ot

If we reflect on these three extreme viewpoints it seems
that it is possible to raise objectioms to each of these view—
points by means of the others. Therefore we have to conclude
that each of these viewpoints is right in some respect and
we are wrong if we claim that one of these is the complete,
solution of the space problem.

§ 2 Methods and interests

We may obtain a better insight into the problem if we admit
that various persons have various interests concerning the
space problem and that these various interests will determine
the methods used to describe and solwve the problem, or more
precisely, to solve the parts of the problem of intereéf.

For example the method depends upon whether one is asking
what has to be anticipated before every experience with ob-
jects existing side by side; or whether one is askjng, what
are the‘necessary postylates on manipulation of solid bodies
for the purpose of measuring distances between spots (finite
physical realizations of points) in the real space; or whether
one is asking, what are the '"real structures" of space which
make it "possible" to cgnstruct measuring apparatuses in the
usual way. : '

Since our primary interest is in this last question, we
shall not consider questions concerning the historical deve-
lopment of physics. We only seek the formulation of a physi-
cal theory by which it is possible to answer the question:
what aspects of geometry describe a real structure?



