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Foreword

VER THE YEARS, Patrick’s path and mine have crossed on the wind-

ing road to creating software quality. He has taken many of my

seminars, learning the various methods and models that advocate
the motto of Logical Conclusions, Inc.: “No Bugs.”

From the name we have given them, I think of bugs as “innocent” little
things that crawl into a system when the original computer programmer
isn’t looking,. It is ironic that my mother, who has never seen a line of com-
puter code in her life, knows what a bug is. What an awful situation the sys-
tems profession has gotten itself into when the layperson has a well-known
word for such an unprofessional aspect of a business.

Patrick has dedicated a good part of his recent professional life to per-
haps the biggest bug known to the layperson. The Y2K problem definitely
is not something that accidentally crawled into systems but something that
was deliberately set and discovered about as far into systems’ life cycles as a
bug can get.
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SoLviNG THE YEAR 2000 Crists

The Y2K problem reminds me of a quote I often used in my program-
ming seminars. Edsgar Dykstra, one of the granddaddies of structured pro-
gramming, said (as near as I can remember), “More programming sins have
been committed under the guise of efficiency than any other reason,
including blind stupidity.”

The Y2K problem stems from an efliciency issue. Ironically, the effort
to clear up the problem appears to be costing most companies far more
than the original systems’ development effort and the savings in storage
space over the years.

If only we would learn from such messes and resolve to do better in the
future. The way is clear; it only requires following the discipline already
available to do it right the first time. Meanwhile, I believe Patrick’s book
should be of great help in eradicating this especially nasty bug before it
metamorphoses into a disastrous epidemic.

Brian Dickinson

Logical Conclusions, Inc.
Lake Tahoe, California
November 1997
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Preface

HEN | WAS IN THE FIFTH GRADE, I lived at Sewart Air Force Base

near Smyrna, Tennessee. I delighted in observing the many

varieties of insects that inhabited the streams and fields near my
home and decided I would be an entomologist when I grew up. That was a
momentous decision, since it required abandoning my long-held (since
early in the fourth grade) plan to be a Nobel prize-winning chemist. Then I
read that chemical companies were one of the largest employers of ento-
mologists, and my two passions were complementary: I would be an ento-
mologist for a chemical company. It was some months before the awful
realization struck me that the tie between chemistry and entomology is
insecticides and that the goal of most entomologists is to kill as many
insects as possible. As a consequence, I abandoned my plans for both
chemistry and entomology and eventually found a career that involved
exterminating bugs without harming any insects: computer programming,
So it would seem natural that I would be drawn to what has been called
“the mother of all computer bugs” [1]. The problem of how to deal with
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Countdown to
January 1, 2000

the year 2000, or Y2K, in computer software may seem deceptively simple,
but writing this book has drawn on all my quarter century of experience as
an economist, a programmer, an analyst, and a manager.

My audience is the workers, both business and technical, and front-
line managers actually dealing with the nitty-gritty of the problem in large
corporations and government agencies. A number of excellent books are
out there that cover planning and imtiating Y2K projects, but this book is
intended as a view from the trenches covering the practical aspects of actu-
ally getting the systems fixed. Perhaps because my background is both
computer science and economics, I take a pragmatic approach. The pur-
pose of the book 1s threefold: (1) to give you the knowledge you need to
carry out the job, (2) to give you the sense of urgency you need to keep
going through a tough project, and (3) to impart the confidence you need to
tackle it.

First, the knowledge. This book is divided into five parts designed to
provide Y2K teams with the facts needed to solve the problem. Part I
describes the problem in detail; Part IT covers the mechanical solutions
available to fix the problem; Part III discusses the people issues surround-
ing the project; Part IV explains how to organize the project; and Part V
takes a look at the business aspects of the problem.

Second, I want to give you a sense of urgency. If you have not started
your Y 2K project, you must do so now. As the following table shows, time
is running out rapidly. The table shows the number of calendar days, nor-
mal workdays, and weekends to January 1, 2000. For many Y2K teams,
days and workdays will be the same, since they’ll be working through the
weekends!

As of Days Workdays Weekends
1/1/98 730 501 104
2/1/98 699 480 99
3/1/98 671 461 95
4/1/98 640 439 91
5/1/98 610 418 87
6/1/98 579 398 82
8/1/98 518 354 74
7/1/98 549 376 78
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Preface

Countdown to
January 1, 2000
{continued)

As of Days Workdays Weekends

9/1/98 487 333 69
10/1/98 457 312 65
11/1/98 426 291 60
12/1/98 396 272 56

1/1/99 365 251 52

2/1/99 334 231 47

3/1/99 306 212 43

4/1/99 275 189 39

5/1/99 245 167 35

6/1/99 214 147 30

7/1/99 184 125 26

8/1/99 153 104 21

9/1/99 122 82 17
10/1/99 92 61 13
11/1/99 61 41 8
1211199 31 pAl 4

L

Last but not least, I hope to impart confidence. Fixing your Y2K bugs
will be a major project and one that will have a planned return on invest-
ment (ROI) of zero (some of your projects may have had no ROI, but this
is the first time it has been planned that way). But the sky is not going to
fall, and with some planning, foresight, common sense, and plain hard
work, we'll get through this crisis, although not without some problems. If
managed properly, the cost of the project should be in the same order of
magnitude as many major development efforts your organization has suc-
cessfully completed in the past.

The following table lists some possible assessments of the Y2K prob-
lem and its eventual effects on the world economy. My assessment is about
a 5. I think this is a tough job that will take hard work, but one I am
confident we can handle if we get serious about it.
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Let’s just do tt!
)
Score Assessment
0 It is a hoax perpetrated by vendors, consultants, and lawyers to make a
lot of money.
1 It is a minor problem that easily can be fixed.
2 It is no big deal.
3 The problem should be addressed, but it is not serious.
4 It is a serious problem if not fixed, but it is well within the realm of what
can be done.
5 It is a serious problem that will require hard work, but it can be fixed
without disaster.
6 The problem can be fixed but will be very expensive.
7 It is a serious problem that will have huge costs and cripple some large
companies.
8 The costs will be 5o severe as to cause major economic repercussions.
9 The problem will cause severe disruptions to our way of life for at least
several months.
10 The problem will be the end of civilization as we know it, and we never

How bad is it? L

will recover.

REFERENCE

Patrick McDermott
Oatland, California
May 1998
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