Nolving
) the lear

T Y [DTS N Y g T T BT e R O S L e R AT L S]

EI][I[I Crisis

Solving the Year
2000 Crisis

Patrick McDermott

Ag

Artech House

Boston ¢ London

Library of Congress Cataloging-in-Publication Data
McDermott, Patrick.
Solving the Year 2000 crisis |/ Patrick MeDermott.
p. cm.— (Artech House computer science library)
Includes bibliographical references and index.
ISBN 0-89006-725-2 (alk. paper)
1. Year 2000 date conversion (Computer systems) 1. Title.
II. Series
QA76.76.564M37 1998
005.1°6—dc21 98-2923
CIP

British Library Cataloguing in Publication Data
McDermott, Patrick
Solving the year 2000 crisis.—(Artech House computer science library)
1. Year 2000 date conversion (Computer systems)
I. Title
005.1°6

ISBN 0-89006-725-2
Cover and text design by Darrell Judd

© 1998 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America.

No part of this book may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying, recording, or by
any information storage and retrieval system, without permission in writing
from the publisher.

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Artech House cannot
attest to the accuracy of this information. Use of a term in this book should
not be regarded as affecting the validity of any trademark or service mark.

International Standard Book Number: 0-89006-725-2
Library of Congress Catalog Card Number: 98-2923

10987654321

To Lilian

Foreword

VER THE YEARS, Patrick’s path and mine have crossed on the wind-

ing road to creating software quality. He has taken many of my

seminars, learning the various methods and models that advocate
the motto of Logical Conclusions, Inc.: “No Bugs.”

From the name we have given them, I think of bugs as “innocent” little
things that crawl into a system when the original computer programmer
isn’t looking,. It is ironic that my mother, who has never seen a line of com-
puter code in her life, knows what a bug is. What an awful situation the sys-
tems profession has gotten itself into when the layperson has a well-known
word for such an unprofessional aspect of a business.

Patrick has dedicated a good part of his recent professional life to per-
haps the biggest bug known to the layperson. The Y2K problem definitely
is not something that accidentally crawled into systems but something that
was deliberately set and discovered about as far into systems’ life cycles as a
bug can get.

Xiif

SoLviNG THE YEAR 2000 Crists

The Y2K problem reminds me of a quote I often used in my program-
ming seminars. Edsgar Dykstra, one of the granddaddies of structured pro-
gramming, said (as near as I can remember), “More programming sins have
been committed under the guise of efficiency than any other reason,
including blind stupidity.”

The Y2K problem stems from an efliciency issue. Ironically, the effort
to clear up the problem appears to be costing most companies far more
than the original systems’ development effort and the savings in storage
space over the years.

If only we would learn from such messes and resolve to do better in the
future. The way is clear; it only requires following the discipline already
available to do it right the first time. Meanwhile, I believe Patrick’s book
should be of great help in eradicating this especially nasty bug before it
metamorphoses into a disastrous epidemic.

Brian Dickinson

Logical Conclusions, Inc.
Lake Tahoe, California
November 1997

XV

Preface

HEN | WAS IN THE FIFTH GRADE, I lived at Sewart Air Force Base

near Smyrna, Tennessee. I delighted in observing the many

varieties of insects that inhabited the streams and fields near my
home and decided I would be an entomologist when I grew up. That was a
momentous decision, since it required abandoning my long-held (since
early in the fourth grade) plan to be a Nobel prize-winning chemist. Then I
read that chemical companies were one of the largest employers of ento-
mologists, and my two passions were complementary: I would be an ento-
mologist for a chemical company. It was some months before the awful
realization struck me that the tie between chemistry and entomology is
insecticides and that the goal of most entomologists is to kill as many
insects as possible. As a consequence, I abandoned my plans for both
chemistry and entomology and eventually found a career that involved
exterminating bugs without harming any insects: computer programming,
So it would seem natural that I would be drawn to what has been called
“the mother of all computer bugs” [1]. The problem of how to deal with

XV

SorvinG THE YEAR 2000 Crisis

Countdown to
January 1, 2000

the year 2000, or Y2K, in computer software may seem deceptively simple,
but writing this book has drawn on all my quarter century of experience as
an economist, a programmer, an analyst, and a manager.

My audience is the workers, both business and technical, and front-
line managers actually dealing with the nitty-gritty of the problem in large
corporations and government agencies. A number of excellent books are
out there that cover planning and imtiating Y2K projects, but this book is
intended as a view from the trenches covering the practical aspects of actu-
ally getting the systems fixed. Perhaps because my background is both
computer science and economics, I take a pragmatic approach. The pur-
pose of the book 1s threefold: (1) to give you the knowledge you need to
carry out the job, (2) to give you the sense of urgency you need to keep
going through a tough project, and (3) to impart the confidence you need to
tackle it.

First, the knowledge. This book is divided into five parts designed to
provide Y2K teams with the facts needed to solve the problem. Part I
describes the problem in detail; Part IT covers the mechanical solutions
available to fix the problem; Part III discusses the people issues surround-
ing the project; Part IV explains how to organize the project; and Part V
takes a look at the business aspects of the problem.

Second, I want to give you a sense of urgency. If you have not started
your Y 2K project, you must do so now. As the following table shows, time
is running out rapidly. The table shows the number of calendar days, nor-
mal workdays, and weekends to January 1, 2000. For many Y2K teams,
days and workdays will be the same, since they’ll be working through the
weekends!

As of Days Workdays Weekends
1/1/98 730 501 104
2/1/98 699 480 99
3/1/98 671 461 95
4/1/98 640 439 91
5/1/98 610 418 87
6/1/98 579 398 82
8/1/98 518 354 74
7/1/98 549 376 78

XV

Preface

Countdown to
January 1, 2000
{continued)

As of Days Workdays Weekends

9/1/98 487 333 69
10/1/98 457 312 65
11/1/98 426 291 60
12/1/98 396 272 56

1/1/99 365 251 52

2/1/99 334 231 47

3/1/99 306 212 43

4/1/99 275 189 39

5/1/99 245 167 35

6/1/99 214 147 30

7/1/99 184 125 26

8/1/99 153 104 21

9/1/99 122 82 17
10/1/99 92 61 13
11/1/99 61 41 8
1211199 31 pAl 4

L

Last but not least, I hope to impart confidence. Fixing your Y2K bugs
will be a major project and one that will have a planned return on invest-
ment (ROI) of zero (some of your projects may have had no ROI, but this
is the first time it has been planned that way). But the sky is not going to
fall, and with some planning, foresight, common sense, and plain hard
work, we'll get through this crisis, although not without some problems. If
managed properly, the cost of the project should be in the same order of
magnitude as many major development efforts your organization has suc-
cessfully completed in the past.

The following table lists some possible assessments of the Y2K prob-
lem and its eventual effects on the world economy. My assessment is about
a 5. I think this is a tough job that will take hard work, but one I am
confident we can handle if we get serious about it.

Xvii

SoLviNG THE YEAR 2000 Crisis

Let’s just do tt!
)
Score Assessment
0 It is a hoax perpetrated by vendors, consultants, and lawyers to make a
lot of money.
1 It is a minor problem that easily can be fixed.
2 It is no big deal.
3 The problem should be addressed, but it is not serious.
4 It is a serious problem if not fixed, but it is well within the realm of what
can be done.
5 It is a serious problem that will require hard work, but it can be fixed
without disaster.
6 The problem can be fixed but will be very expensive.
7 It is a serious problem that will have huge costs and cripple some large
companies.
8 The costs will be 5o severe as to cause major economic repercussions.
9 The problem will cause severe disruptions to our way of life for at least
several months.
10 The problem will be the end of civilization as we know it, and we never

How bad is it? L

will recover.

REFERENCE

Patrick McDermott
Oatland, California
May 1998

1. Keogh,]., Solving the Year 2000 Problem, Boston: AP Professional,

1997, p

XVl

7.

Acknowledgments

NE OF THE NICEST THINGS about the Y2K problem is that I keep

running into people I haven’t seen in years. Thanks to two friends

from the “old days” at the California Division of Labor Statistics
for their ideas and encouragement both then and now, Jerry Freeman and
Colt Rymer.

Brian Dickinson of Logical Conclusions, Inc., was a source of advice
and inspiration, both in reviewing material for this book and in classes I
have taken from him over the years. Brian’s ideas and teaching have
improved the quality of systems developed for the State of California and
American President Lines, so I know there is an approach to system devel-
opment that leads to a logical conclusion.

Y2K also has introduced me to many interesting experiences and
acquaintances and some new friends. Thanks to Anthony M. Peeters of
San Francisco Computer Consultants, Inc. He has been a source of insight
and wisdom, and his selfless work in forming and running the San

Xix

SoLvinG THE YEAR 2000 Crisis

Francisco Bay Year 2000 User Group is helping to alleviate the impact of
Y2K in the Bay area.

Thanks to the staff and students at the University of California exten-
sions at UC Santa Cruz, UC Davis, UCLA, and UC Berkeley for their
help, questions, and comments, which have improved the book tremen-
dously. Special thanks to Nancy Bruss at UC Davis for suggesting a general
seminar on the subject that got me started teaching at UC; to Dan Clarke
and Sandra Clark for their ideas and support on the Y2K COBOL course
at UC Santa Cruz; and to Sandra for her help with turning the concept into
a reality.

Bill Payson of Senior Staff 2000 originally suggested the concept of a
Y2K COBOL course at UC Santa Cruz that led to my involvement in a
project that helped shape this book. His spirit of determination no doubt
will continue to inspire us to tackle the Year 2000 challenge.

Mike Gee was born in Okinawa, Japan, where I went to high school.
The Japanese word omoshiroi means both “fun” and “interesting.” It was
both fun and interesting being featured in USoft’s Year 2000 seminar
series in the San Francisco Bay area. Thanks to Mike for including me and
for his insights on replacement as a solution to Y2K.

Thanks to Jonathan Plant at Artech House for acquiring the book and
his many acts of kindness along the way. It has been a pleasure to work
with him and the other fine people at Artech House.

Many thanks to Peter de Jager and the subscribers of his Maillist for
many interesting discussions and observations that were both informative
and amusing and the spirit of helping others that he has championed.

Words can never adequately thank Lilian Roberts for her support and
understanding. Without her encouragement, I might never have completed
the project. Her help in crafting sentences about topics she didn’t under-
stand and acting interested in what is to most an inherently uninteresting
topic significantly contributed to any merit this book might have.

XX

Contents

Foreword xiii Symptom 2: 2001 - 1999 = 2,
but01-99=-98 7
Preface xv Symptom 3: 00,99 = Never 8
Reference xvird Symptom 4: The last shall sort first 9

. Symptom 5: An interface built for two 10
Acknowledgments Xix Symptom 6: The days of our weeks 11
Part 1 Symptom 7: The one you forgot about 12
1 When does the 21st century

actually begin® 12
The fail-safe principle 13
Chapter 1 Embedded systems 14
Other date-range limits 150

The problem

Governments’ role in fixing the problem 2

The seven warning signs of Y2K 5
Symptom 1: 2001 > 1999, but 01 <99 6

vif

SoLviNG THE YEAR 2000 Crisis

Levels of software 15
References 16

Chapter 2

The good news 17

The very magnitude of the problem
isanally 18

Computers are not so smart 19

Hits before “doomsday” 20

Scalability 21

Every cloud has a silver(plated) hning 21

References 23

Chapter 3
The bad news 25
What is so hard? 26
Recompiling 28
May the source be with you 29
Other obstacles 30
Interdependencies 30
Self-fulfilling prophecies 31
Some potential disruptions 32
Getting a straight answer 32
The leap-year algorithm 33
Birthdays 37
The next Y2K? 38
The worst that could happen 38
References 39

Chapter 4
It's not that bad... 41
The most expensive problem in history? 41
Massive bankruptcies and recession? 42
Already to0 late? 43
Catastrophe scenarios 44
Be prepared! 44
References 45

Vil

Part 2

Solutions 47

Chapter 5

Replace 49

When to replace 50
When not to replace 50

Advantages, disadvantages, variations 51
References 51

Chapter 6
Expand 53
Converting the data 54
“Hidden” copies of data 58
Machine time for conversion 58
Finding the space 59
The international standard 60
Bridges and interfaces 60
Logic changes 61
Other calendars 62
“Smart” keys are dumb 63
Advantages and disadvantages 64
Variations 65
References 65

Chapter 7
Window 67
We do windows 67

Fixed window 68

Sliding window 69

Pryot year 70
Objections to windowing 71
The century domain problem 72
I/O or inside? 72
Standard date library 73
Intercept logic 73
Advantages and disadvantages 73

Contents

Varnations 74
Reference 75

Chapter 8
Compress 77
Digits versus bytes 77
Original formats 80
Compressed formats 81
Julian dates 82
Lilian 2000 84
ABCs 85
Advantages and disadvantages 86
Variations 87
References 87

Chapter 9

Work around 89

A provocative (heretical) question 90
Is it really broke? 91

Mirabile dictu 91

When to nof fixit 92

The fix might break it 93

Ride it out 94

Examples of workarounds 95

Advantages and disadvantages of
workarounds 96

Variations 96
Reference 96

Chapter 10

Encapsulate 97

When to encapsulate 98

Time warp 98

Advantages and disadvantages 99

Variations 100
Reference 100

Chapter 11

Abandon 101

How bad isit? 101

Rounds 102

Advantages and disadvantages 103
Variations 104

Chapter 12
Code archaeology 105
The data definitions 106
What's in a name? 107
Strange names 107
Misses and false positives 111
The logic statements 111
Programmer’s comments 112
The data 112
Documentation 114
The execution path spectrum 114
System interface 114
Hidden code 115

Chapter 13

Selecting a solution 117

Cost factors 118
Cost of the fix 118
Cost to the users 119
Risk 119
Maintainability 120
Performance 121
Limit 121

Tasks 122
Restructure? 122
Convert database? 122
Fix logic? 123
Recompile? 123
Simultaneity 123

Expansion versus windowing 124

Expansion versus compression 125

Sorving THE YEAR 2000 Crisis

Case-by-case approach 126
Use of system date 126
Mottoes and aphorisms 127

Part Il
The people 129
Chapter 14

Staff: The people on your project 131
The labor market 132
Help wanted 133
Rates 136
Factors that affect rates 138
Get some people 140
The coal mines 141
Teaching the basics 142
Loyalty 143
Nonprogramming staff 144
References 144

Chapter 15

Consuitants 145

Outsource or keep in-house? 146
Code factories 147

Offshore consultants 147

Choosing your consultant 150
References 150

Chapter 16

Tools 151

A fool with a tool is still a fool 151
Guarantees 152
Beware analysis paralysis 153

General or language-specific tools? 154

Existing non-Y2K products 155

Y2K compliance 155

Download to PC/LAN? 156

The tool vendors® dilemma 157

Tool classification 158
Non-Y2K categories 158
General categories 159
Y2K-specific tools 163
Reference 163

Chapter 17

Estimating 165

Assessment 166

Estimating techniques 166
LOC method 168
Per-program methed 169
Per-date method 169
Activity-based method 169
Percentage-of-staff method 170
Large-project method 170

Mutatis mutand; 170
Reference 171

Part IV
The project 173
Chapter 18

Strategy 175

Area 1: Scope within the organization 181
Area 2: Scope outside the organization 183

Area 3: Exposure 185

Area 4: Support 186

Area 5: Obstacles 187

Area 6: Control 188

Area 7: Approach 190

Area 8: The seven solutions 191

Area 9: Hedge hopping 192

Area 10: Organization 193

Area 11: Tools 195

Area 12: Vendors 196

Area 13: Staffing 196
References 197

Contents

Chapter 19
Triage 199

Triage groupings 200
Y2K triage levels 201
Don’t be greedy 202

Case-by-case decisions 203
References 203

Chapter 20

“Fix-it” factories 205

Chapter 21
Project planning 209
Phase 1: Assessment 210
Phase 2: Strategy 219
Phase 3: Repair 222
Phase 4: Test 224
Phase 5: Implement 224
Phase 6: Postimplementation 225
Doomsday weekend 225
Doomsday itself 226
References 227

Part V
The business 229

Chapter 22

The business perspective 231
The plight of the small business 231
Mainframes and desktops 232
Maznframe systems 233
Desktop systems 233
The IS/business line 234
Use your CBBUs 235
Cost in perspective 236
Contingency planning 236
References 237

Chapter 23

PCs and desktops 239
It’s amess 240

Rollover test 240

PC fix-its 242
Replacement PCs 242
Spreadsheets 243

The software pyramd 244
Reference 245

Chapter 24

Failure points 247

Where to look 247

How to search 248
The seven warning signs 248
Business events 249
Adayin the life 250

Criticality 250

Some examples 251
Accounts payable 251
Accounts recetvable 252
Licenses and policies 253
Eligibility dates 253
Assumed 19 253
Hlogical negative numbers 254
Reports 255
References 255

Chapter 25
Testing 257
General testing 258
Who does what? 260
The principles of Y2K testing 260
Cost is independent of consequences 260
Define the results 261
Have someone else test 261
Inspect the results 262
Test for the invalid as well as the valid 262

Xi

