TURING [E] R R KR 1T S NT = 7 31

19984F P R H M
5 55 AP % 25

P54k

\ ab\ fi A\
(523Zhi)

Jim Gray e
Andreas Reuter

\

Z NRIMSHL I £

2 POSTS & TELECOM PRESS

\

BRERMEHEIN#EZ %I

Transaction Processing
Concepts and Techniques

Jim Gray
Andreas Reuter

(] &

A ROWB iy R A
b =

BHERRE (CIP) HiE

FHEAHE . A 5+ K = Transaction Processing:
Concepts and Techniques: First Edition: 3237/ (£) #&E
(Gray,J.), (3£) &% (Reuter, A.) & —dtm: AR
BRHL AR, 2009.5

(B R IR L FALEE 251
ISBN 978-7-115-19586-9

L3 IL Ot O HL #HUHRERF - KX
IV. TP319

h ERR A E S TECIPE R £ (2008) 552110065
NERE

A ARG 2R AR SRR SR A, B RS LFoREE . B E T RS, BE
AU, BHEE. BIFRINESSITH AR AR LHRRE, A BEAREFSCEHEARS -,
T E R FBEERA T MR ARG RN, LAR I A X S0 M 2 hn (7] 5 0% 72 4 PR Y 2% 4 F1UXURS: 76
BRI EHRE. &AM AL. 2B EAVEE THSOHERM, AREMMIA, TRESHHRE,
TERIER. KE. BEEXMARG, REMTETTEE, TETHESWACIDEHE . JHRWAIBRALE,
HEEHAKEEARETRANE, RGEMET - EEAFIRE R,

A4 B Z W R AR K LR @ R AR AR A, EAEAFSLERS. BBERL. »
MRRGR, RIEAGFRENAEM, FETHESLHRGEITFEA QDA HEAHERSZ,

B R R U RALEHE R 5
BHEAE. MEEHER (FEXR)
¢ E [2£] Jim Gray Andreas Reuter
TLEEE ki
¢ AREBRMERHHREST AERWEXE 5B #1445
hog 100061 LAt 315@ptpress.com.cn
Wkt http://www.ptpress.com.cn
JE3E & E KB R PR 5] B A
¢ FA. 800x1000 1/16
Ejlgk. 69
FH. 1327 F ¢ 20094E 5 HE 1R
Eigh. 1-2000 4t 200945 Adbiass 1 /kEDR)
HERAREICS EF. 01-2008-5836%
ISBN 978-7-115-19586-9/TP
Ef: 138.00¢

EHERE M. (010) 88593802 ENEFREMLL. (010) 67129223
RishEg:. (010) 67171154

R 1 = BA

Transaction Processing: Concepts and Techniques, First Editrion by Jim Gray and Andreas Reuter, ISBN:
978-15586-0190-1.

Copyright © 1993 by Elsevier. All rights reserved.

Authorized English language reprint edition published by the Proprietor.
ISBN: 978-981-272-316-1

Copyright © 2009 by Elsevier (Singapore) Pte Ltd. All rights reserved.

Elsevier (Singapore) Pte Ltd.
3 Killiney Road
#08-01 Winsland House I
Singapore 239519
Tel: (65)6349-0200
Fax: (65)6733-1817

First Published 2009
20094 %DRR

Printed in China by POSTS & TELECOM PRESS under special arrangement with Elsevier (Singapore) Pte
Lid. This edition is authorized for sale in China only, excluding Hong Kong SAR and Taiwan. Unauthorized
export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal
Penalties.

ARG Elsevier (Singapore) Pte Ltd. %40 A MR B AR EAE i A A RILFTEBE N (A 44E
FHFEIITEREMEERE) BRET. RETATZHA, SAEREERZE, Bk ki,

Foreword

Bruce Lindsay
IBM Almaden Research Center
San Jose, California

Commercial, governmental, scientific, and cultural activities are becoming increasingly de-
pendent on computer-based information resources. As increasing amounts and varieties of
information are captured and maintained by computer systems, the techniques for exploiting,
managing, and protecting this information become critical to the well-being, and indeed the
very survival, of modern industrialized societies.

Transaction processing technology is the key to the coherent management and reliable
exploitation of computer-based information resources.

Transaction processing encompasses techniques for managing both the stored informa-
tion itself and the application programs which interpret and manipulate that information.
From database recovery and concurrency control to transaction monitors that initiate and
control the execution of applications, transaction processing technology provides mecha-
nisms and facilities needed to protect and manage the critical information resources which
underlie many (if not most) commercial, scientific, and cultural activities.

In order for the increasingly vast quantity of computer-based information to be useful, it
must accurately reflect the real world and be available to the application programs that
interpret and exploit the information. In general, exploiting stored information involves
accessing and modifying related data items which collectively describe or model the status
and evolution of real-world phenomena and activities. Because multiple data items must
usually be accessed or updated together to correctly reflect the real world, great care must be
taken to keep related data items mutually consistent. Any interruption of updates to related
items, or the interleaving of updates and accesses, can make the data inconsistent.

The key to maintaining data consistency is to identify the sequences of accesses and up-
dates that represent the interrogation and modification of related data items. Such sequences
are called transactions. Transaction processing technology ensures that each transaction is
either executed to completion or not at all, and that concurrently executed transactions be-
have as though each transaction executes in isolation. The significance of this technology is
magnified by the fact that these guarantees are upheld despite failures of computer compo-
nents, distribution of data across multiple computers, and overlapped or parallel execution of
different transactions.

2 Foreword

Twenty-five years of intense effort in commercial and university laboratories has led to
transaction processing technologies capable of all-or-nothing execution and isolation of con-
current transactions. This book presents, for the first time, a comprehensive description of
the techniques and methods used by transaction processing systems to control and protect
the valuable information resources they manage. The authors describe, in detail, the state-of-
the-art techniques used in the best-of-breed commercial and experimental transaction pro-
cessing systems. They concentrate on proven techniques that are effective and efficient.
Detailed explanations of why various problems must be solved and how they can be ad-
dressed make this book useful to both the serious student and to system developers.

The authors, Dr. James Gray and Professor Andreas Reuter, have between them five
decades of direct experience with the implementations of both commercial and experimental
transaction processing systems. They have both made significant contributions to the art of
transaction processing and are famous for their scientific publications and their ability to
explain the fruits of their research. This book is a distillation of their deep understanding of
transaction processing issues and their hard-won appreciation of the most effective tech-
niques for implementing transaction processing methods. The authors’ ability to distinguish
between fundamental concepts and speculative approaches gives the reader a firm and prac-
tical basis for understanding the issues and techniques of transaction processing systems.

This book covers all aspects of transaction processing technology. The introductory
chapters give the reader a basic understanding of transaction concepts and the computing en-
vironment in which transactions must execute, including important assumptions about the
component failures which the transaction processing system must tolerate. The explanation
of the role of transaction processing monitors, which control the activation and execution of
application programs and the facilities they provide, sets the stage for the presentation of
concurrency control and recovery techniques. The discussion of transaction isolation covers
concurrency control issues from the hardware level to the isolation semantics for records and
indexes. The important and complex technology of transaction recovery in the face of fail-
ures is covered in great detail. From record management to distributed commit protocols, the
recovery techniques needed to ensure all-or-nothing execution and data persistence are pre-
sented and explained. The transaction recovery and isolation techniques are then applied to
the design and implementation of record-oriented storage and associative indexes. Students
and developers of database systems will find much useful information in these chapters. The
book concludes with a survey of transaction processing systems from both the commercial
and the academic worlds.

Throughout the book, the authors provide in-depth discussions of the underlying issues,
and detailed descriptions of proven techniques. The concepts are illustrated with numerous
carefully designed figures. In addition, the techniques are accompanied by code fragments
that increase the reader’s appreciation of the implementation issues.

Transaction Processing: Concepts and Techniques is both comprehensive in its cover-
age of transaction processing technology and detailed in its descriptions of the issues and al-
gorithms. In-depth presentations of the techniques are enlightening to the student and a re-
source for the professional. The importance of transaction processing technology to the in-
formation management needs of industrialized societies makes it essential that this technol-
ogy be well understood and widely applied. This book will serve as a guide and a reference
for the many individuals who will apply and extend transaction processing concepts and

techniques in the years ahead.

Buying books would be great if we could also buy the time to read them.

ARTHUR SCHOPENHAUER: PARERGA UND PARALIPOMENA

Preface

Why We Wrote this Book

The purpose of this book is to give you an understanding of how large, distributed, hetero-
geneous computer systeins can be made to work reliably. In contrast to the often complex
methods of distributed computing, it presents a distributed system application development
approach that can be used by mere mortals. Why then doesn’t the title use a term like dis-
tributed systems, high reliability, interoperability, or client-server? Why use something as
prosaic as transaction processing, a term that for many people denotes old-fashioned, batch-
oriented, mainframe-minded data processing?

The point is—and that’s what makes the book so long—that the design, implementation,
and operation of large application systems, with thousands of terminals, employing hundreds
of computers, providing service with absolutely no downtime, cannot be done from a single
perspective. An integrated (and integrating) perspective and methodology is needed to ap-
proach the distributed systems problem. Our goal is to demonstrate that transactions provide
this integrative conceptual framework, and that distributed transaction-oriented operating
systems are the enabling technology. The client-server paradigm provides a good way of
structuring the system and of developing applications, but it stiil needs transactions to con-
trol the client-server interactions. In a nutshell: without transactions, distributed systems
cannot be made to work for typical real-life applications.

This is not an outrageous claim; rather it is a lesson many people—system implemen-
tors, system owners, and application developers—have learned the hard way. Of course, the
concepts for building large systems have been evolving for a long time. In fact, some of the
key ideas were developed way back when batch processing was in full swing, but they are
far from being obsolete. Transaction processing concepts were conceived to master the com-
plexity in single-processor online applications. If anything, these concepts are even more
critical now for the successful implementation of massively distributed systems that work
and fail in much more complex ways. This book shows how transaction concepts apply to
distributed systems and how they allow us to build high-performance, high-availability

2 Preface

applications with finite budgets and risks. We’ve tried to provide a sense of this
development by discussing some of the “lessons from history” with which we’re familiar.
Many of these demonstrate the problems that transactions help to avoid, as well as where
they hide the complexity of distributed systems.

There are many books on database systems, both conventional and distributed; on op-
erating systems; on computer communications; on application development—you name it.
The partitioning of interests manifest in these terms has become deeply rooted in the syllabi
of computer science education all over the world. Education and expertise are organized and
compartmentalized. The available books typically take their readers through the ideas in the
technical literature over the past decades in an enumerative style. Such presentations offer
many options and alternatives, but rarely give a sense of which are the good ideas and which
are the not-so-good ones, and why. More specifically, were you ever to design or build a real
system, these algorithm overviews would rarely tell you how or where to start.

Our intent is to help you solve real problems. The book is focused in that we present
only one or two viable approaches to problems, together with explanations; but there are
many other proposals which we do not mention, and the presentation is not encyclopedic.
However, the presentation is broad in the sense that it presents transaction processing from a
systems perspective. To make large systems work, one must adopt a genuine end-to-end atti-
tude, starting at the point where a request comes in, going through all the system layers and
components, and not letting go until the final result is safely delivered. This necessarily in-
volves presentation management in the terminals, the communication subsystem, the operat-
ing system, the database, the programming language run-time systems, and the application
development environment. Designing a system with that sort of integration in mind requires
an altogether different set of criteria than designing an algorithm within the narrow confines
of its functional specification. This holistic approach is not one that we’ve found in other
presentations of distributed systems and databases. However, since the beginning of this
project in 1986, we’ve been convinced that such an approach is necessary.

Topic Selection and Organization

Since the end-to-end perspective forced us to cover lots of ground, we focused on the basic
ideas of transaction processing: simple TP-systems structuring issues, simple transaction
models, simple locking, simple logging, simple recovery, and so on. When we looked at the
texts and reference books available, we noticed that they are vague on the basics. For exam-
ple, we haven’t found an actual implementation of B-trees in any textbook. Given that B-
trees are the access path structure in databases, file systems, information retrieval systems,
and who knows where, that is really basic. This presentation is like a compiler course text-
book or like Tanenbaum’s operating system book. It is full of code fragments showing the
basic algorithms and data structures.

The book is pragmatic, covering basic transaction issues in considerable detail. Writing
the book has convinced us that this is a good approach, but the presentation and style may
seem foreign. Our motive is to document this more pragmatic perspective. There is no theory
of structuring complex systems; rather, the key decisions depend on educated judgment and
adherence to good engineering principles—pragmatic criteria. We believe that these
principles, derived from the basic concept of transaction-oriented processing, will be impor-
tant for many years to come.

Looking at the table of contents, you will find a forbidding number of chapters (16), but
they are organized into seven subject areas, which can be read more or less independently,
and in different order.

The first topic is an overview of transaction processing in general (Chapter 1). It pre-
sents a global system view. It introduces the basic transaction properties: atomicity (all-or-
nothing), consistency (a correct transformation of state), isolation (without concurrency
anomalies), and durability (committed changes survive any system failures)—ACID, for
short. The nontechnical reader can end there and still gain a broad understanding of the field.

Chapter 2 is meant for readers vaguely familiar with the basic terminology of computer
science. The chapter introduces the most important terms and concepts of hardware, soft-
ware, protocol standards, and so on—ail the terminology needed for the technical discus-
sions later in the book.

Chapter 3 explains why systems fail and gives design advice on how to avoid such fail-
ures. It reviews hardware and software fault-tolerance concepts and techniques (fail-fast, re-
dundancy, modularization, and repair). If you want to learn how to build a module with a
mean-time-to-failure of 10,000 years, using normal, faulty, off-the-shelf components, this is
where to look. Chapter 3 explains the significance of transactions in building highly avail-
able software.

Chapters 4 through 6 present the theory and use of transactions. Chapter 4 gives a
detailed discussion of what it means to structure applications as transactions. Particular
attention is paid to types of computations not well-supported by current flat transactions.
These applications require extension and generalization of the transaction concept. Chapter 5
explains what transaction-oriented computation means for the operating system and other
low-level components by describing the role of the TP monitor. It also explains how a
transaction program interacts with the system services. Chapter 6 is for programmers. It
contains lots of control blocks and code fragments to explain how transactional remote
procedure calls work, how request scheduling is done, and other such subtleties. Readers not
interested in bit-level events should skim the first half of that chapter and start reading at
Section 6.4 about transactional queues.

Chapters 7 and 8 present the theory and practice of concurrency. Transaction processing
systems hide all aspects of parallel execution from the application, thereby giving the isola-
tion of the ACID properties. Chapter 7 presents the theory behind these techniques, and
Chapter 8 demonstrates how to implement this theory with locking.

Chapters 9 through 12 present transaction management and recovery, that is, everything
related to making transactions atomic and durable. Chapter 9 explains how logging and
archiving are done. Chapter 10 explains how to write a transactional resource manger like a
database system or a queue manager. It explains how the resource manger joins the
transaction, how it writes log records, gets locks, and participates in transaction commit or
rollback. A simple resource manger (the one-bit resource manger) is used to demonstrate the
techniques. Chapter 11 takes the transaction manager perspective; it must always reliably
know the state of a transaction and which resource managers are working on the transaction.
The implementation of a simple transaction manager is laid out in Chapter 11—again,
something to be skipped by those who do not need to know all the secrets. Chapter 12 is a
catalog of advanced concepts and techniques used by transaction managers.

Chapters 13 through 15 deal with yet another self-contained topic: the implementation
of a very important resource manager, a transactional file system. Starting from the bare
metal (disks), space management is sketched, and the role of the buffer manager in the

Preface

3

4 Preface

system is explained in some detail. Next comes the abstraction of varying-length tuples from
fixed-length pages, and all the file organizations that support tuple-oriented access. Finally,
Chapter 15 talks about associative access, focusing primarily on B-trees and how to
implement them in a highly parallel environment. All this is done in a way that provides the
ACID properties: the resulting files, tuples, and access paths are transactional objects.

Chapter 16 gives an overview of many commercially available systems in the transac-
tion processing arena. We have tried to highlight the features of each system. This is not a
competitive comparison; rather it is a positive description of the strengths of each system.

At the end, there is an extended glossary of transaction processing terminology. Having
such a large glossary is a bit unusual in a textbook like this. However, as the motto of
Chapter 5 indicates, terminology in the field of transaction processing is all but well-estab-
lished. So the glossary has to serve two purposes: First, if you are uncertain about a term,
you can look it up and find our interpretation. Second, by being used this way, the glossary
might actually help to promote a more homogeneous terminology in the field.

Basics of

Transaction Processing 1. Book Overview

2. Basic Terminology

Basics of
Fault Tolerance 3. Faults and Fault Tolerance

4. Transaction Models

T tion-Oriented
ac ton-nen 5. Transactional Programming Styles

Computing 6. How a TP Monitor Works
goncur]rency 7. Concurrency Theory (serializability)
ontro 8. Concurrency Control (focking)

9. Logging

10. Transactional Resource Managers
Recovery 11. Transaction Manager

12. Advanced T™ techniques
A Sample 13. Implementing File and Pages
Resource Manager 14. Implementing Record and Fields

15. Implementing Access Paths

System Surveys 16. Overviews of Popular TP Systems

Chapters 1 through 15 contain historical notes that explain how things were developed,
where certain ideas appeared first, and so on. In contrast to many other areas in computer
science, transaction processing developed primarily in industrial research and development
labs. Some ideas conceived and implemented in commercial products were rediscovered
years later and published as scientific results. In the historical notes we try give credit to
both contributions, to the best of our knowledge.

Most chapters also have exercises ranging from short refreshers to term projects. The
answers to most of them are provided at the end of each chapter. Following Donald Knuth,
each exercise has a qualifier of the form [section, level]. The exercise applies to the material
in the section indicated. The level is an indicator of how difficult the exercise is:

[10] One minute (just to check whether you have followed the text)
[20] 15-20 minutes for full answer

[25]) One hour for full written answer

[30] Short (programming) project: less than one full day of work
[40] Significant (programming) project: two weeks of elapsed time

In addition, we have used the ratings [project] for anything that is likely to be higher than
[40], and [discussion] for exercises that ask readers to go out and explore a certain subject
on their own.

The original plan for the book was to include SQL implementation and application de-
sign along with transactions. As the work progressed, we realized that there was not space or
time for these topics. So, as it stands, this book is about how to implement transactions. Ceri
and Pelagatti’s excellent book [1984] covers the high-level database issues (SQL, normaliza-
tion, optimization, and also some transaction management issues).

Learning with this Book

The book is intended for advanced undergraduates, graduate students, and for professional
programmers who either want to understand what their transaction processing system is do-
ing to them (e.g., a CICS/DB2 user) or who need a basic reference text. It assumes that you
have a reading knowledge of SQL and C.

The content of this book has no exact counterpart among computer science classes at a
university. The compartmentalization of subjects is inherent in the structure of the curricu-
lum, and as yet there is no standard class on transaction processing. However, the book has
already been used in a variety of undergraduate and graduate courses during our various
stages of draft manuscript. We feel the approach we have taken is appropriate within the ex-
isting structure of computer science, but we hope that exposure to our approach will help to
eliminate compartmentalized thinking. Here are some suggestions for emphasizing different
aspects of the coverage:

Just getting the idea: Chapter 1, Sections 2.7, 4.1-4.2, 5.1-5.3, 5.5-5.7, and Chapter 16,

An introduction to transaction processing: Chapters 1 and 2, Sections 3.1-3.6, Chapters
4 and 5, Sections 6.4-6.5, 7.1-7.6, Chapters 9, 10, 16.

Database systems: Chapters 1, 4, 7, 10, 13, 14, 15.

Preface

5

6 Preface

Distributed systems: Chapters 1,2,3,4,7, 8, 10, 11, 12, 16.
Operating systems: Chapters 1,2, 3,5, 6,7, 8, 10, 11, 13, 16.

Advanced coverage: Read everything. In advanced courses, Chapters 1 and 3 can be
skipped or done away with quickly. In addition, one could use the books by Tanenbaum
on operating systems and computer networks, by Ceri and Pelagatti on distributed
databases, by Oszu and Valduriez on principles of distributed databases, and one of
Date’s books on databases in general.

Many other combinations are conceivable. Those who are already familiar with the subject
can skip Chapters 1 and 2; we recommend browsing them, just to grasp the terminology
used throughout the book.

Chapter 3 can be skipped, but we recommend you read it. Transactions may seem all
too obvious at the first glance. However, Chapter 3 carefully explains why transactions are
the right exception-handling model and are a key to building highly available systems. The
techniques described therein help provide a better understanding of what fault tolerance at
the system level means, and they can be put to use almost immediately for anyone building
applications.

We sketched the few dependencies that exist among the chapters while introducing the
subject areas. If you read the entire book, you will notice some redundancy among the
chapters. This feature allows chapters to be used independently.

To enhance course use of this book, instructors might consider using software available
from Transarc Corporation through the Encina University Program. The Encina products are
designed to enable distributed, standards-based online transaction processing in open com-
puting environments. Many of the topics in this book could be explored through course pro-
jects using the Encina family of modular products: for example, distributed transaction man-
agement, transactional remote procedure calls, advanced lock and recovery models, shared
logging systems, a record-oriented resource manager, and a transaction monitor. Contact
information about the Encina family of products and academic site licences can be found on
the copyright page of this book.

If you have time enough, and if you are thoroughly interested in transaction processing,
get copies of papers by Bjork and Davies [1972; 1973; 1978]. These early articles started the
whole field, and it is instructive to read them from our current perspective. One appreciates
that transactions evolved not so much as a natural abstraction, but as a radical attempt to cut
out complexity that otherwise proved to be unmanageable. When reading these seminal pa-
pers, you will also find that the vision outlined there has not yet become reality—not by a

wide margin.

Concluding Remarks

As the acknowledgments indicate, drafts of this book were reviewed and class-tested for two
years (1990-1991). Not only has this improved the presentation and accuracy of the text, it
also changed the overall design of the book. New chapters were added, others were dropped,
and the book doubled in size. The review process and heated debates also changed the way
the material is organized. One of us started top-down, whereas the other one wrote bottom-
up. In the end, we both reversed our approaches.

Preface

Apart from that, errors remain errors, and they must be blamed on us with no excuse.
We will be very grateful, though, if you let us know the ones you find. Please send such
comments to the authors in care of the publisher, or to the electronic mailbox

Gray @microsoft.com.

Acknowledgments

This book benefited from the detailed criticism and advice of many people. We gratefully
acknowledge their guidance. We are especially grateful to Frank Bamberger, Phil Bernstein,
Noel Herbst, Bruce Lindsay, Dave Lomet, Dan Siewiorek, Nandit Soparkar, Kent Treiber,
and Laurel Wentworth for detailed advice on improving the emphasis or focus of the book.
More than anything else, the criticism of Beity Salzberg and her classes shaped the

presentation of this book. Thank you all.

Phil Bernstein at Digital

Frank Bamberger at Citibank
Edward Brajinski at Digital

Mike Carey at Wisconsin

Stefano Ceri at Milano

Edward Cheng at Digital

Joe Coffee at Northeastern

Mike Cox at Princeton

Flaviu Cristian at IBM

Gary Cuhna at Northeastern
Walker Cunningham at Morgan Kaufmann
Allyn Dimock at Northeastern
Robert Drum at Northeastern

Dan Duchamp at Columbia
Amanda Carlson at HP

Jeff Eppinger at Transarc
Georgios Evangelidis at Northeastern
Scott Fitzgerald at Northeastern
Hector Garcia-Molina at Princeton
Amal Gebrael at Northeastern
Yujia Haung at Northeastern
Ricky Ho at G.O. Graphics
Walter Hursch at Northeastern
Meichun Hsu at Digital

Pat Helland at HAL

Noel Herbst at Tandem

Pete Homan at Tandem

Olaf Kruger at Northeastern

T.J. Jafar at Northeastern

Jim Johnson at Digital

Johannes Klein at Digital
Angelica Kokkinaki at Northeastern
Jacek Kruszelnicki at Northeastern
Olaf Kruger at Northeastern

Lori Ann Lashway at Polaroid
Don Langenhorst at Northeastern
Bruce Lindsay at IBM

Dave Lomet at Digital

Randell MacBlane at USL
Dorthy Minior at GSSI

Elliot Moss at U. Massachusetts
Ron Obermarck at Digital

Jeffry Picciotto at Mitre

Franco Putzolu at Tandem
Xinyang Qian at Northeastern
Ron Regan at Northeastern
Dennis Roberson at Digital
Eleana Rosenzweig at Northeastern
Daphne Ryan at Northeastern
Betty Salzberg at Northeastern
Tom Sawyer at Tom Sawyer
Fabio Schreiber at Milan

Linda Seiter at Northeastern
Mark Sherman at Transarc

Dan Siewiorek at CMU

Eric Skov at Northeastern
Donald Stutz at Tandem

Mark Smith at U. Massachusetts
Narjit Sindupal at ATT

Nandit Soparkar at U. Texas
Christos Stamelos at Northeastern

8 Preface

Kent Treiber at IBM Bill Wisnaskas at Northeastern
Mike Ubell at Digital David Wong at Northeastern
Tom Vancor at BGS Robert Wu at Digital

Vic Vyssotsky at Digital Hans-J6rg Zeller at Tandem
Laurel Wentworth at Digital Ying Zhou at Northeastern
Gary Warner at Northeastern

Walker Cunningham, our developmental writer, carefully criticized all the chapters. His
efforts made an enormous difference in the clarity of the book.

Our colleagues heavily influenced certain chapters. Betty Salzberg suggested the need
for Chapter 2 (terminology). Dan Siewiorek and Vic Vyssotsky contributed heavily to the
chapter on fault tolerance. Bruce Lindsay and Harald Sammer influenced our presentation of
transaction concepts. Phil Bernstein, Noel Herbst, Bruce Lindsay, and Ron Obermarck
caused us to rethink our presentation of transaction management. Dave Lomet and Franco
Putzolu contributed heavily to the chapters on record and file management. Frank
Bamberger, Elliot Moss, Don Slutz, and Nandit Sopakar gave us valuable overall criticism
of the boak.

Charlie Davies, the visionary who launched our field 20 years ago, deserves mention
here. Charlie’s work on spheres of control is little known. His papers are obscure, but all
who came in contact with him were inspired by his vision. Workers in the field are still try-
ing to work out the details of that vision. Chapter 4 presents his ideas in more modern terms.

Transaction processing is a field in which practice has led theory. Commercial systems
often implement ideas long before the ideas appear in an academic setting. One is reminded
of Galileo claiming the invention of the telescope to the doges of Venice while merchants
were selling mass-produced Dutch telescopes in the streets below.

Throughout the book, we are faced with a dilemma. Does one give credit to the first to
publish an idea? Or, does one give priority to the earlier development and implementation of
the idea in a product? Academic tradition and U.S. patent law give priority to the first to
publish. We have tried to credit both. The historical notes in each chapter recount, as best we
can, the parallel commercial and academic development of the ideas. Perhaps the point is
moot; implementors don’t want credit for ideas, they want the cash.

One implementor, Franco Putzolu, has deeply influenced our field in general, and the
authors in particular. Franco has never written a paper or a patent, but his ideas and code are
at the core of System R, SQL/DS, DB2, Allbase, and NonStop SQL. These designs have been
widely copied by others and are repeated here. Franco Putzolu deserves much of the credit
for this book.

Bruce Spatz, our publisher, gave us excellent guidance on the focus of the book. He ar-
ranged for many reviews, arranged the classroom tests, and encouraged us when we needed
it most. We also are very grateful to our project manager, Jennifer Ballentine of Professional
Book Center, and Jeanne Thieme, our copyeditor, for their contributions to this book.

Andreas’s students contributed to the book in many ways: They read draft versions,
used it for teaching, tried the exercises, worked on the references, and so on—typical student
slave labor. Moreover, the absence of their supervisor when he periodically got serious about
“finishing that book now” meant they had to work on their own much more than one would

wish.

Gabricle Ziegler, Andreas’s secretary, deserves special thanks for keeping him orga-
nized during the whole endeavor—not an easy assignment. She had to pacify many people
who had good reason to be angry for his not responding for days or weeks when he was
again “finishing that book now.”

Christiane Reuter almost wrote a chapter on application design, but decided against it.
However, she took care of the authors during the first long writing assignment in Ripa—not
a simple task given the quality of the local power and the dreadful weather. She also ac-
cepted the multiyear ordeal of late nights and lost weekends.

Tandem Computers and Digital Equipment Corporation were Very generous in their

support of Jim Gray’s efforts on this book.
Thanks to all of you who kept us going, even kept us amused, and tolerated our obses-

sions and varying tempers.

Jim Gray

Andreas Reuter
University of Stuttgart

Trademarks

Ada is a trademark of the U.S. Government, Ada Joint Program Office.

ACP (Airlines Control Program), AIX, AS/400 (Application System/400), CPI-C (Common
Programming Interface-Communications), DL1, DB2, Expedited Message Handling (IMS
Fast Path), IBM, IMS/DB(DataBase), IMS Fast Path, IMS/XRF, IMS/TM, IMS/DC, IMS, IBM-
SAA (System Application Architecture), IBM PS2, IMS Extended Reliability Feature, MVS
08/2, 0 8/360, Presentation Manager, RS/6000, SN A, System/370, System/38, XRF
(Extended Recovery Feature) are trademarks or registered trademarks of International
Business Machines Corporation.

Apollo's Domain is a trademark or registered trademark of Hewlett Packard Computer
Company.

Burroughs is a registered trademark of Burroughs Corporation.

CDD/Plus (Common Data Dictionary/Plus), CDD/Repository (Common Data Dictionary/
Repository), DECforms, DECdta, DECtp, DECintact, DECq, DECnet, Rdb, Rdb/VMS, RTR
(Reliable Transaction Router), VAX/VMS, VAX cluster, VMS, VMS Lock Manager are
trademarks or registered trademarks and VAX is a registered trademark of Digitial Equip-
ment Corporation.

CODASYL is a trademark or registered trademark of Conference In Data Systems Language.

Com-Plete is a trademark or registered trademark of Software A.G.

Encina is a trademark or registered trademark of Transarc Corporation.

Preface

9

10 Preface
Ethernet is a trademark or registered trademark of Xerox Corporation.
FastPath is a trademark or registered trademark of Intel Corporation.
FORTRAN is a trademark or registered trademark of SofTech Microsystems, Inc.

Guardian, NonStop SQL, Pathway are trademarks or registered trademarks of Tandem
Computers.

HPALLbase, HP9000, Precision Architecture are trademarks or registered trademarks of
Hewlett Packard Computer Company.

Ingres, Postgres System are trademarks or registered trademarks of INGRES Corporation.
Interbase is a trademark or registered trademark of Borland Intemational, Inc.

MS/DOS, Mach 10 are trademarks and Windows is a registered trademark of Microsoft Corp.
Multics is a trademark or registered trademark Honeywell Computer Systems.

Macintosh, Macintosh News are registered trademarks of Apple Computer Company.

New NextStep, NextStep, Next are trademarks or registered trademarks of NEXT Computer
Corporation.

NCR, TOPEND are trademarks or registered trademarks of National Cash Register
Corporation.

Oracle is a trademark or registered trademark of Oracle Corporation.

Open Look is a trademark or registered trademark of UNIX System Laboratories, Inc.

Sun Microsoft, Sun RPC are trademarks or registered trademark of Sun Microsystems, Inc.
Tuxedo, UNIX are registered trademarks of AT&T Bell Laboratories.

TCP/IP is a trademark or registered trademark of Defense Advanced Research Projects
Administration.

x.25 is a mark of the Comite Consultiatif Interiationale de Telegraphique et Telephonique.

All other brand and product names referenced in this book are trademarks or registered
trademarks of their respective holders and are used here for informational purposes only.

PART ONE

The Basics of
Transaction Processing

