R
(Optimization
lechnigues
~ In FORTRAN

| JOALLSEARS
SRR

Joel L. Sears

OPTIMIZATION TECHNIQUES
IN
FORTRAN

PBI

a petrocelll
book

new york /prlnceton

Copyright © 1979 Petrocelli Books, Inc.

All rights reserved.
Printed in the United States
128345678910

Library of Congress Cataloging in Publication Data

Sears, Joel L
Optimization techniques in FORTRAN.

Includes index.

1. FORTRAN (Computer program language) 2. Mathe-
matical optimization. I. Title.
QA76.73.F25538 001.6'424 79-9710
ISBN 0-89433-034-9

INTRODUCTION

Optimization has emerged as a science unto itself. In the
past, computer scientists and practitioners were primarily
concerned with the optimization of the computer resource
itself. This meant that major efforts were aimed at reducing
CPU time, minimizing storage requirements, and enhanc-
ing the overall “efficiency” of systems through a combina-
tion of hardware and software refinements.

The obvious reason for this orientation was cost. With
computer charges in excess of $1,000 per hour, it made a
great deal of sense to commit significant amounts to re-
search and development in the field. After all, seven to ten
dollars an hour for a highly trained specialist’s time was a
bargain when contrasted with the costs and potential savings
twenty years ago.

Without saying that all this attention to the computer is
no longer necessary, we must recognize that optimization
has taken on a far broader meaning— particularly in the
economic sense of the word. It is one thing to speed up a sys-
tem and another to reduce its cost.

Recognizing that the tariffs for performing routine tasks
with a computer have been reduced a thousandfold in some
cases doesn’t imply that hourly rates have been reduced
from hundreds and thousands of dollars per hour to
pennies. But it does indicate that, with the incredible speed
and capacity of modern computers, each calculation, com-

ix

OPTIMIZATION TECHNIQUES IN FORTRAN

COMPUTING COSTS

|
|
I
|
{
I
|
I
I
|

Cost

Integrated Circuits

|
1
[
[
|
|
|
|
I
|
|
I
|
|
I
i
|
I
|
|
|
|
I
|
1

Time

Figure A: History of computing costs

parison, or transfer can be performed in a mere fraction of
the time required by machines common in the early 1960s.

This technological improvement, coupled with manu-
facturing advances as well as increased marketing pressures
applied by hundreds of mainframe and peripheral vendors,
has literally knocked the bottom out of price consciousness
as we once knew it. The curve in Figure A relates
computational costs and time since the dawn of the com-
puter age.

At the same time, enemy inflation has been working
noticeably at the human end of the cost spectrum. So much
so that during the past 25 years, personnel budgets have
nearly quadrupled as a result of higher wages, growing
staffs, and the expense of underwriting the enlightenment of
the community as a whole. Therefore, as raw computing
costs have decreased significantly, so have payrolls, R&D
budgets, and education costs increased as portrayed in Fig-
ure B.

INTRODUCTION

Cost

Human Investment

Time

Figure B: Rising investment in people

This then introduces the modern orientation which is
necessarily more balanced than its predecessor. Optimiza-
tion as practiced in a business environment takes a turn less
transfixed on computer costs toward the overall investment

Cost

Figure C: Total investment in systems

Systems Investment

Total

A

ComputerJ

Human— -

OPTIMIZATION TECHNIQUES IN FORTRAN

in systems. By adding the two previous curves, we can ap-
preciate the rationale for a balanced approach (Figure C).

The balanced philosophy provides the foundation for
the optimization techniques presented in this book. As a
user rather than student of computers, my objective has
been to control and minimize the total cost of a particular
project through a combination of computer and human
efficiencies. The methods advocated herein are intended to
help through their direct application and to stimulate the
development of extensions and original methods by each
reader. You may even find areas which contradict classical
efficiency techniques. Bear in mind, however, that our
problem is now somewhat broader and calls for a more
diversified solution.

Aside from optimization techniques per se is the atten-
tion paid to FORTRAN in a business context. Admittedly,
there is a natural tendency to stress COBOL or PL1 in com-
mercial applications. However, at least three factors under-
pin the rationale for the ever-increasing use of FORTRAN in
business (or nonscientific) applications.

First, many of us have relied on FORTRAN as a “quick
and dirty” means of solving problems. We could easily
automate a process by brute force with little regard for the
sort of developmental overhead associated with COBOL, for
example (i.e., lengthy environment and data divisions).

Second, FORTRAN is commonly assimilated by students
whose majors are formally separated from the computer
sciences. Budding accountants, statisticians, biologists,
physicists, and psychologists alike opt for FORTRAN to solve
the quantitative problems associated with their specialties.
The movement of these users into the business world in
steadily increasing numbers brings all the tools and knowl-
edge acquired in training to the problem-solving concerns
of business in general.

Third, FORTRAN is one of the few “traditional” languages
available in both interactive and batch environments. Such

xii

INTRODUCTION

commonality encourages program development and testing
in the interactive mode for direct adaptation to production
in the batch world.

The response of computer manufacturers to widespread
commercial use is encouraging, to say the least. Powerful ex-
tensions which support nonnumeric processes, enhanced
input/output efficiencies, and integration with data base
management systems are now available to nearly every
major computer system user. The strongest evidence of
FORTRAN as a general language can be found in the 1978
ANSI Standard, an ambitious recognition of the extensions
which have evolved during the 11 years since the last stan-
dard was published.

As a practitioner, I have drawn from ten years of experience
backed by formal training in the computer sciences. Recog-
nition belongs to the following for their inspiration and in-
direct contributions: IBM, Honeywell, CDC, Burroughs,
Sperry-Univac, DEC, and Peterson, Howell & Heather, Inc.

Special thanks go to Dee Madden for her secretarial
assistance and to Al Fentress and Mac McDaniel for encour-
aging me to share these techniques with you.

Xiii

CONTENTS

INTRODUCTION ix
1 / Character Values 1
2 / Comments 5
3 / COMMON 7
4 / Documentation 13
5 / End-of-File Processing 21
6 / Equivalence 25
7 / Extensions to the FORTRAN IV Compiler
8 / Input/Output Considerations 33
9 / Subroutines and Functions a7
10 / Tricks of the Trade 61
11 / Variable Types and Names 77
12 / Vendor Manuals 81
13 / Words 83

INDEX 87

vii

31

1
CHABAGTER VALUES

The variables and constants generally associated with
FORTRAN programs are numeric. After all, the language
evolved originally to handle scientific problems. The
treatment of character data (popularly called “Hollerith” or
“literal” data) was limited at best. Thus, we wrote many
programs which converted alphabetic values to some nu-
merical equivalent to allow for comparisons, sorting, etc.

In short order, practitioners and software experts alike
recognized the need for additional character manipulation
capabilities to satisfy the requirements of “commercial”
applications. Naturally, a whole host of character and even
bit manipulation features have appeared recently.

But, examining what really occurs during the compila-
tion and execution of this character-oriented logic, we see
that powerful capabilities exist even in versions of the
language without modern character extensions.

First, since the loading of values to memory does not
necessarily depend upon the declared variable type, it is
permissible to “mix” values and variables in what appear to
be incompatible ways. For example, this is a legal way to
load a character value:

INTEGER LABEL/‘ABCD’/

Since the INTEGER declaration defines the mathematical
context of LABEL, it is now reasonable to compare or even
sort variables and arrays so loaded.

OPTIMIZATION TECHNIQUES IN FORTRAN

To load these variables during execution (by reading
their values from a tape file, for instance), merely use the
appropriate A format and treat the variable as you please.

In addition, mixed alphanumeric values such as ‘A123’
can be handled in similar fashion. Traditionally, such val-
ues posed many interesting problems for a FORTRAN pro-
grammer. Because short alphanumeric values appear fre-
quently in business applications as inventory codes, cus-
tomer numbers, and others, they were usually decomposed,
converted for analysis, and, finally, recomposed for output.
Such values could have been treated directly by the method
discussed earlier. In other words, ‘A12%3’ can be handled
intact. There is no need to create two values for analysis
purposes.

Character values and variables also appear in the con-
text of “variable formats” (discussed in greater detail in
another section). Such variables actually contain format
information which can be altered during execution like any
other variable. The format itself can be read from an input
file or created and modified strictly in the coding. Here are
two brief examples:

Example 1
* DECLARE STORAGE FOR VARIABLE FORMAT, FMT1
REAL FMT 1(10)

* LOAD FORMAT INFORMATION INTO FMT1
READ (1,10) FMT 1
101 FORMAT (10A6)

READ (2, FMT1, END = 200) RECORD

Example 2

* SETUP VARIABLE FORMAT WITH DUMMY TAB AND REPEAT INFO:
CHARACTER VFMT * 13 /*(A4, TYY, XXI6)'/

1 / CHARACTER VALUES

* SETUPTABAND REPEAT INFO. AS FUNCTION OF K.

ENCODE (VFMT, 6001) 90-K*6, K
6001 FORMAT (T6, 12, T9, 12)

WRITE (2, VFMT) LABEL, (QUTDATA (1), | = 1,K)

In the first example, a generalized program has been cre-
ated to allow the user to specify the actual record layout in a
flexible fashion at program execution time. In the second,
representing a well-extended FORTRAN compiler, the for-
mat VFMT is altered to insure that the information in OUT-
DATA is always right justified in the output record.

2
COMMENTS

Nothing obscures the meaning of a program more than the
passage of time, and nothing is more exasperating than
reinterpreting old, nondocumented code. To put the teeth
into true optimization, then, each of us is bound to include
comments in our programs while its concepts are fresh. Follow
this simple rule and you can painlessly create well-docu-
mented code which will be as clear in the future as it is on
the drawing board: Say it in English first, then code it.

To minimize the effort required to “say it,” practice
creating highly descriptive variable names, use indentation,
blanks and blank lines, and try creating informal comments
with executable logic. The following example serves to illus-
trate the difference in approach and readability. First, try to
figure out the meaning of this “traditional” section of code:

DO 101 =1,N

10 P =P+ X()
P = P/N
R = .0125

IF(CC.EQ.10) R = .008

OPTIMIZATION TECHNIQUES IN FORTRAN

Now try to figure out this commented version:

* %

* %

**

* %

*x

COMPUTE CLIENT’S AVERAGE DAILY BALANCE
FIRST ACCUMULATE TOTAL PURCHASES FOR THE MONTH

DO 10 | = 1, DAYS
10 TOT PUR = TOT PUR + PURCH (1)

DIVIDE THIS TOTAL BY THE NUMBER OF DAYS IN THE MONTH TO
OBTAIN THE AVERAGE DAILY BALANCE

AVG BAL = TOT PUR/DAYS

BECAUSE WE GIVE LOWER INTEREST RATES TO PREFERRED
CLIENTS, THE CODE MUST BE CHECKED BEFORE FIXING THE
RATE

FIRST, ASSUME CLIENT IS NOT PREFERRED, THEN . . .
RATE = .0125
HOWEVER, . . .
1F (CODE.EQ.10) RATE = .008

While the traditional approach is obviously easier to code, it
certainly lacks the clarity and explicit rationale demanded
by the modern accountants, auditors, and managers whom
we serve. Furthermore, the commented version may even
obviate the need for a separate document, since it fully ex-
plains the assumptions and procedures employed by the
analyst. This continually encourages documentation which
is both accurate and up-to-date.

3
COMMON

Now to explore one of the most powerful features of FOR-
TRAN. Used traditionally and in combination with other
FORTRAN statements, COMMON is the key that unlocks a
treasure chest of programming capabilities.

By definition, COMMON establishes those locations in
memory which are to be shared by many program routines.
Additionally, COMMON invokes contiguous organization of
the variables and arrays associated with it.

Typically, there are two types of COMMON —block and
labelled. To confuse matters, “block” is often called “blank”
or “unlabelled” since it is not identified by a label. The term
“block” was coined to associate COMMON with the BLOCK
DATA subprogram feature of FORTRAN which provides
compile-time initialization of the variables in “block” cOM-
MON.

In general, COMMON variables which are required glob-
ally —that is, in every routine of a program —are stored in
block COMMON. Those which are used in a smaller subset of
the total are best associated with a labelled COMMON area.
The relationship of block and labelled COMMON is depicted
for a typical program in Figure 3.1. For a program mapped
like this one, the COMMON statements might look like this:

*MAIN

COMMON SALES, EXPENS, MARKTG
COMMON /L1/ MARGIN

OPTIMIZATION TECHNIQUES IN FORTRAN

END

SUBROUTINE SUB1

COMMON SALES, EXPENS, MARKTG
COMMON /L1/ MARGIN

COMMON /L2/ TAXES

END

SUBROUTINE SUB2

COMMON SALES, EXPENS, MARKTG
COMMON /L2/ TAXES

END

Figure 3.1: Relationships of block and labelled COMMON to the routines

in a program

Block
COMMON

Routine Labelled
COMMON
MAIN
SUB1 \
L2
sSuB2

