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PREFACE

As the field of machine learning enjoys unprecedented growth and attracts
many new researchers, there is a need for regular summaries and comprehensive
rcviews of its progress. This volume is a sequel to the previous volumes of the
same title: Volume I appeared in 1983, Volume II in 1986. Volume III presents a
sample of machine learning research representative of the period between 1986 and
1989.

One noteworthy characteristic of that period is that a much larger portion of
rcsearch has been done outside of the United States, particularly in Europe. To
reflect his, Volume III contains a significant number of non-U.S.A contributions. In
addition, this volume covers topics not covered at all or covered only sparsely by
the previous volumes, such as connectionist learning methods, genetic algorithms,
and computational learning theory.

To provide a comprehensive representation of research, this volume has
drawn on several sources. Most of the chapters are directly invited contributions by
leading researchers in the field. Several chapters are updated and extended versions
of invited presentations at the International Meeting on Advances in Leamning
(IMAL) held in Les Arcs, France in July 1986. These chapters are accompanied by
commentaries prepared by the discussants at the meeting. Finally, few chapters are
based on papers selected from among those presented at the 4th and Sth Interna-
tional Machine Learning conferences, held at the University of Califonia at Irvine
in June 1987 and the University of Michigan at Ann Arbor in June 1988, respec-
tively.

The bibliography at the end of the book provides a comprehensive guide to
these and related publications. It contains over 1000 entries and refers to publica-
tions in all major ML subareas for the period 1985-1989. All the entries are in-
dexed, using a classification of ML publications into 17 categories.

For more complete coverage of the progress of the field, the reader is referred
to relevant journals, in particular, Machine Learning, Artificial Intelligence, and Al
Magazine, and to the proceedings of various conferences. Among the most relevant
conferences are international machine learning conferences [T87, T88, T89], the
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meetings of the American Association for Artificial Intelligence [AAAI T86, T87
and T88], workshops on computational learning theory [COLT T88 and T89], the
workshop on explanation-based learning [T88], international conferences on ge-
netic algorithms [T87 and T89], conferences on neural nets, the European Working
Sessions on Learning [EWSL T87, T88 and T89], the European congresses on
artificial intelligence [ECAI T86 and T88], the International Joint Conferences on
Artificial Intelligence [IJCAI T87 and T89], and International Workshop on Tools
for Artificial Intelligence (1989).

It is the editors pleasant duty to thank all those who helped in the preparation
of this book. Our deep gratitude goes to all the contributors for their efforts to write
the chapters in a highly comprehensive and easy-to-read manner. We are very
grateful to the reviewers, whose help was indispensible. We wish to thank Shirley
Jowell, Production Manager for Morgan Kaufmann, for her contribution to this
book.

Special thanks go to DIGITAL-EUROPE and the London office of the U.S.
Army. These organizations sponsored IMAL, which gave the first impetus this
volume. The editors also acknowledge the help and technical support extended to
them by the faculty, staff, and research assistants of the Center for Artificial Intelli-
gence and the Department of Computer Science at George Mason University and
by the French National Research Center (CNRS).

Ryszard S. Michalski
George Mason University

Yves Kodratoff
F'rench National Research Center (CNRS)
and George Mason University
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RESEARCH IN MACHINE LEARNING:

Recent Progress, Classification of Methods,
and Future Directions

Ryszard S. Michalski
(George Mason University)

Yves Kodratoff
(CNRS, Université de Paris-Sud and
George Mason University)

Abstract

The last few years have produced a remarkable expansion of research in ma-
chine learning. The field has gained an unprecedented popularity, several new areas
have developed, and some previously established areas have gaincd new momen-
tum. While symbolic methods, both empirical and knowledge intensive (in particu-
lar, inductive concept learning and explanation-based methods), continued to be ex-
ccedingly active (see Parts Two and Three of the book, respectively), subsymbolic
approaches, especially neural networks, have experienced tremendous growth (Part
Five). Unlike past efforts that concentrated on single learning strategies, the new
trends have been to integrate different strategies and to develop cognitive learning
architectures (Part Four). There has been an increasing interest in experimental com-
parisons of various methods, and in theoretical analyses of learning algorithms. Re-
searchers have been sharing the same data sets and have applied their techniques to
thc same problems in order to understand the relative merits of different methods.
Theoretical investigations have brought new insights into the complexity of learning
processes (Part Six).

This chapter gives a brief account of the recent progress and prospective re-
scarch dircctions in the field, attempts to clarify some basic concepts, proposes a
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multicriteria classification of learning methods, and concludes with a brief descrip-
tion of each chapter.

1.1 INTRODUCTION

One of the most striking differences between how people and computers work
is that humans, while performing any kind of activity, usually simultaneously expend
cfforts to improve the way they perform it. This is to say that human performance of
any task is inseparably intertwined with a learning process, while current computers
arc typically only executors of procedures supplied to them. They may execute very
cfficicntly, but they do not self-improve with experience.

Research in machine learning has been concerned with building computer pro-
grams able to construct new knowledge or to improve already possessed knowledge
by using input information. So far, this input information (examples, facts, descrip-
tions, ctc.) has been typically typed in by a human instructor. Future machine lcarn-
ing programs will undoubtedly be able to receive inputs directly from the environ-
ment through a varicety of scnsory devices.

The great appeal of this field to its practitioners is that machine learning offers
an immense diversity of research tasks and testing grounds. This diversity is due to
the fact that lcarning can accompany any kind of problem solving or process, and
thus it can be studicd in many different contexts, such as decision making, classifica-
tion, sensory signal recognition, problem solving, task execution, control, or plan-
ning.

This continual appcal of the field has been enhanced recently by the fact that
progress in machine learning has become central to the development of the field of
artificial intelligence (AI) as a whole and affects almost all of its subareas. In partic-
ular, the work in machine learning has importance for expert systems development,
problem solving, computer vision, speech understanding, autonomous robotics, con-
ceptual analysis of databases, and intelligent tutoring systems. Consequently, the de-
velopment of powerful learning systems may ultimately open an unprecedented
rangc of new applications (e.g., [Michalski, 1986]).

Research on building Iecarning programs goes back almost to the beginning of
the computer arca. After the first significant burst of research on perceptrons and
sclf-organizing systems in the 1950s and the first few years of the 1960s, the ficld
has been growing slowly but steadily. Some early successes include, for example,
the Samuel’s checkers program [Samuel, 1959], Winston’s program for lcarning
structural descriptions [Winston, 1970; 1975], the Meta-DENDRAL program for
heuristic rule formation [Buchanan, Feigenbaum, and Sridharan, 1972], the AM and
EURISKO discovery programs [Lenat, 1977; 19831, AQ11 for diagnostic rule learn-
ing [Michalski and Chilausky, 1980], LEX for learning symbolic integration [Mitch-
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cll, Utgoff, and Banerji, 1983], and CLUSTER for conceptual clustering [Michalski
and Stepp, 1983].

These successes and the ever-present challenge to build powerful learning sys-
tems, have exerted strong pressure to expand the activities in this field. The first ma-
chine leaming workshop was held at Carnegie Mellon University (CMU) in 1980.
This workshop and the publication in 1983 of the first volume of Machine Learning
[Michalski, Carbonell, and Mitchell, 1983] marked a breaking point. These two
cvents gave the field a clear identity and a sense of direction, which in turn stimu-
lated the rapid growth that has continued unabated since then.

There have been subsequent workshops and conferences: at the University of
IHlinois at Urbana-Champaign in 1983, at Rutgers University in 1985, at the Univer-
sity of California at Irvine in 1987, at the University of Michigan in 1988, and at
Comell University in 1989. In 1986, Machine Learning, Volume Il appeared [Mi-
chalski, Carbonell, and Mitchell, 1986]. In response to the growing need for an ade-
quate forum for presenting research progress, Machine Learning journal was ¢stab-
lished in 1986.

There have also been numerous workshops and meetings on special topics,
such as computational learning theory (COLT 88 and 89), explanation-based learn-
ing (AAAI workshop at Stanford University, 1988), connectionist models of Icarning
(c.g., summer schools at CMU in 1986 and 1988 and a number of international con-
ferences), and knowledge discovery in databases (IJCAI-89 workshop in Detroit).

In parallel, there has been a rapid increase of interest in machine learning in
Europe, as signified by many activities, meetings, and conferences. Among the most
noteworthy were the European Working Sessions on Learning (Orsay 1986, Bled
1987, Glasgow 1988, and Montpellier 1989), the International Meeting on Advances
in Learning in Les Arcs in 1986, the workshop on Knowledge Representation and
Organization in Machine Learning (KROML 1987), Workshop on Machine Learn-
ing, Metareasoning and Logic (Sesimbra 1988), and Summer Schools in Machine
Learning (Les Arcs 1988 and Urbino 1989), International Schools for the Synthesis
of Knowledge (ISSEK 1987 and 1989). To reflect these activities, this volume in-
cludes a significant number of non-U.S. contributions.

1.2 RECENT DEVELOPMENTS

The last few years have witnessed both a continuation of the major traditional
rescarch approaches and a rapid increase of interest in several new methodologics.
The most active rescarch area in recent years has continued to be symbolic empirical
Icaming (SEL). This arca is concerned with creating and/or modilying general sym-
bolic descriptions, whose structure is unknown a priori. This type of lcarning can be
contrasted with, e.g., learning weights assigned to connections in a given ncural ncet,
or coeflicients of equations in a predefined form. The descriptions are created on the
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basis of examples or specific facts. The word “empirical” signifies the fact that the
lcarning process docs not require much prior knowledge of the learner (if the process
relics on a large amount of explicitly stated prior knowledge, then we have knowl-
cdge-intensive symbolic learning).

An important criterion underlying SEL methods is that knowledge created by a
lcarning program is supposed to be easy for humans to interpret and comprehend.
This means that there is a concern to make knowledge representations simple in
terms of the structares used and the number of operators involved. It also means that
the concepts employed in the descriptions should directly correspond to those used
by human experts. This criterion is sometimes called the comprehensibility principle
[Michalski, 1983]. Typical knowledge structures employed in the SEL systcms in-
clude commonly used symbolic representations, such as logic-based descriptions,
rules, decision trees, semantic networks, equations, frames, and grammars. Due to
the comprehensibily criterion, the SEL systems can be particularly useful in applica-
tions in which people need to {ully comprehend the results of leaming—{or example,
in technical, medical, or agricultural diagnosis; decision making, planning, eco-
nomic or political analysis; discovery of knowledge in databases, prediction, etc.

The most common topic in SEL is developing concept descriptions from con-
cept examples. The machine learning bibliography (MLB; the last chapter of this
book), which contains 1050 entries covering the period 1985—89, lists about 190
publications on this topic. Other major topics in SEL include qualitative discovery,
conceptual clustering, and empirical sequence prediction. The MLB lists another 130
publications on these topics; thus together, there are about 320 papers listed in the
MLB on symbolic empirical learning.

As mentioned above, empirical methods typically use relatively little back-
ground knowledge, by which we mean the relevant domain-dependent knowledge,
such as facts or rules characterizing the application domain, and domain-indepen-
dent knowledge, such as general definitional knowledge, commonsense knowledge,
and cxplicit rules of inference, which the learner can bring to bear in the process of
lcarning. In SEL systcms, the background knowledge may include merely informa-
tion about the value scts and types of attributes or terms (descriptors) uscd, the con-
straints on the attributes, preference criteria or biases for judging candidate solutions,
ctc. The domain-dependent information can be introduced to a program when it is
applicd to a particular problem, and therefore it is relatively easy to devclop a gen-
cral-purpose empirical learning program. The AQ family of rule lcarning programs
(e.g., [Michalski, 1973; and Chapter 3, this volume], and the ID3-type decision tree
lcarning programs [Quinlan, 1979; and Chapter 5, this volume] are examples of such
general-purpose SEL systems. The AQ programs generate rules by manipulating
knowledge structures according to rules of inference and knowledge transformation,
The ID3-type systems create a decision tree by a recursive selection of attributes
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from a given sct. The attribute sclection is based on statistical considerations (e.g.,
the minimum entropy rule), rather than on explicit rules of infercnce.

The primary inference type used by SEL methods is empirical induction. This
form of induction (as other forms, such as constructive induction and abduction, see
the mext section) is a falsity-preserving, rather than truth-preserving inference.
Therefore, the results of SEL mcthods are generally hypotheses, which nced to be
validated by further experiments, This is often viewed as an important weakness of
the empirical methods. It reflects the intrinsic uncertainty of any process of creating
ncw knowledge about the world, and therefore is unavoidable in principle. The only
way to circumvent it is to restrict the learning process either to copying existing
knowledge or to strict deductions from knowledge that has been tested and assumed
to be true. Such an a priori knowledge has to be encoded into the system before any
lcaming can occur (see analytic methods in the next section).

Another weakness of the SEL mecthods is that the knowledge learned by them
represents relations expressed merely in terms of attributes or concepts either di-
rectly specified in the input data, or closely related to them (an empirical program
may include procedures for transforming the initial description space). Because the
. mcthods rely primarily on the input information, rather than on background knowl-
edge, they cannot discover complex relationships or causal dependencices, which re-
quire high-Ievel terms or concepts, not provided by the input.

The fact that symbolic empirical methods do not use/require much background
knowledge is appcaling to many rescarchers. Examples or observations are often
casily available from existing databases or can be measurcd by sensors. There is no
nced for debugging and handcrafting large amounts of knowledge into the system,
Consequently, empirical learning systems are readily applicable to a wide spectrum
of practical problems. In addition, because the results are usually easy to interpret (in
contrast to subsymbolic systems; see below), the methods are particularly attractive
in application areas where understandability of the results is an important factor. A
sclection of rescarch in symbolic empirical learning is presented in Part Two, Chap-
ters 3 through 9.

In recent years, there have been various efforts to extend the capabilitics of
conventional SEL systems. A considerable amount of work has been done on learn-
ing concepts from imperfect inputs, e.g., learning from examples with noise (sce
Chapter 5). Related cfforts have been concerned with learning concepts that lack
precise definition and/or are context dependent (see Chapter 3).

Another major extension of empirical methods addresses the problem of em-
ploying more background knowledge in the process of inductively creating concept
descriptions. The motivation is that people, due to their prior knowledge, can often
crcate plausible inductive hypotheses from a few, or just one, instances. For ¢xam-
ple, if one sces a single window of a particular style in a tall skyscraper, then onc
docs not need to ook at other windows to hypothesize that all the windows in that
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building are of this style. The rcason is that we know that windows in a building are
Lypically made in the same style. As another example, consider a person who decep-
tively misinforms others about something really important. Usually, it would not
take more than one such instance to cause others to never trust that person in the
future. Again, this is because of a common belief, that if a person lied once, it is
likely that this person may continue such behavior, and trusting such a person would
carry a very high risk. Thus, by involving prior knowledge, one can create plausible
inductive hypotheses from very little input information, contrary to some beliefs
about inductive lcarning,

Also, in many applications, it is important to discover relationships that go be-
yond associations between inputs and outputs. In such applications, it is important to
scarch for relationships that involve higher level concepts than those defined in the
inputs, to generate and employ abstract attributes and relations, and/or to determine
causal explanations of the observations. Any process of theory formation requires
much background knowledge in addition to observational data.

To this end, some researchers started to work on constructive induction, which
is a term for characterizing inductive processes that engage significant amount of
background knowledge ([Michalski, 1983]; see also [Muggleton and Buntinc, 1988§;
Rouvcirol and Puget, 1989]). Such background knowledge may be in the form of
expert-given domain knowledge rules, logical implications and equivalences, ab-
stract concept definitions, heuristic procedures for gencrating new concepts, goal-
oriented criteria for evaluating the importance of created knowledge, and others.
This knowledge may be used in the conventional, deductive manner, thus, construc-
tive induction typically includes a large component of deductive inference. Equipped
with appropriate background knowledge, constructive inductive systems can change
the representation of the problem or invent new attributes or concepts. As described
in ([Michalski, 19907; see also Section 1.3), constructive induction involves “reverse
reasoning” or “tracing backward” of certain implicative rules, which are cither
domain-independent (lautological implications) or domain-dependent (representing
domain knowledge). When domain-independent rules are primarily involved (spe-
cifically, the falsity-prescrving gencralization rules), then constructive induction re-
duces 1o empirical induction. When certain domain-dependent implicative relation-
ships are “traced backward,” then such induction becomes abduction (sce next
scction). There arc over 50 publications listed in the MLB in the arca of constructive
mduction, abduction, and representation change.

Other classes of empirical learning systems include parametric and helcroge-
ncous systems. In parametric systems, the learning process involves a modification
of certain paramcters or weights associated with predefined structures (networks,
cquations, production rules, etc.). Learning in heterogeneous systems involves both a
dircct modification of knowledge structures and a modification of the parameters as-
sociated with these structures. The most popular and important representative of
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parametric systems are neural nets and connectionist systems. In those systems, the
learning process typically involves a modification of the strength of the connections
between units in a statically or dynamically defined network. All units often perform
the same general transformation, and therefore it is easy to build very large networks
of that kind. It is important to note that a modification of the strengths of connections
in a neural network can lead to a change in the knowledge structure. This structural
change, however, is indirect and implicit, rather than direct and explicit, like in sym-
bolic systems. The most explored subsets of heterogeneous systems are genetic algo-
rithms and classificr systems. In those systems, the modification of the structures is
done either by random changes (mutation), or semirandom changes (crossover),
rather than by explicit rules of inference, like in typical symbolic systems. The
weights assigned to individual production rules represent their importance or effcc-
tiveness in performing the assigned task.

Recent years have witnessed a remarkable renaissance of research on leaming
in neural nctworks. There is rapidly growing interest in exploring their propertics
and potential applications. Since these systems employ a general and uniform
knowledge representation, and typically use little background knowledge, it is easy
1o implement them and apply them experimentally to a wide spectrum of problems.
As they require very little guidance from a teacher, they are very appealing to many
researchers.

A major limitation of ncural networks and genetic algorithms is the difficulty
of introducing large amounts of domain specific knowledge to them, and explicitly
cxploiting that knowledge or any feedback information in the learning process. To
cxplain the latter, suppose that a neural network or genetic algorithm gets feedback
that some example was incorrectly classified. To take care of the mistake, the system
modifics its knowledge representation by stepwise corrections, rather than by an ¢x-
plicit analysis of the rcasons for the mistake. This scems to explain why such sys-
lems tend to exhibit relatively slow rates of lcarning. Another weakness is the lack of
transparcncy of the results of learning. The knowledge acquired by ncural nctworks
or conventional genctic algorithms is not in the form that people can casily under-
stand. The comprchensibility principle has not been viewed as a major issue in im-
plementing such systems. For that reason, they are sometimes called subsymbolic
learning sysiems.

The lack of transparcncy is not necessarily always a problem. There are many
application domains that do not require that the knowledge learned be easy to under-
stand. For example, it is not important to understand the control algorithm cf a robot,
as long as it can move its hand to the given destination and within a defined space.
This weakness is only a problem in areas where people need to understand the
knowledge underlying the system’s behavior; e.g., in diagnostic, advisory, or plan-
ning systems. It can be pointed out that a genetic algorithm could potentially be ap-
plied with a high-level symbolic knowledge representation (such a method would



