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Preface

This book was written with the following main objectives.

1. To provide practicing civil engineers and civil engineering students
with concepts and techniques for evaluating the reliability of
engineering systems.

2. To provide civil engineers the means of assessing and improving upon
the reliability of their designs.

3. To present this information as an organized, logical, and systematic
body of knowledge.

4. To provide the civil engineer with an understanding of the important
idea of probability theory as the encoding of information and to
illustrate its relevance with application to practical problem situations.

5. To provide this knowledge so as to enable the civil engineer to
understand and assimilate the literature being developed.

In no field of engineering are practitioners faced with a more complex
set of operating conditions than those concerned with the action of civil
engineering systems subject to natural or induced loadings. Unlike their
colleagues in other engineering disciplines, who often have the advantage
of observing the performance of many prototypes under anticipated
loadings, civil engineers are generally faced with systems that are custom-
built and tailored to special demands and specific locations. To be sure,
similarities do exist and information can be and is transferred from
previous successes and failures. However, to paraphrase Tolstoy: All
successes are similar, but each failure is unique!

This book has evolved from lecture notes and from the author’s
involvement as a consulting engineer in a number of civil engineering
projects. Most of the material has been taught in courses in civil
engineering at Purdue University. In addition, the author has presented
much of this material in a number of one-week short courses to
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many groups of practicing engineers and at universities throughout the
world.

The form of this book was designed to meet the needs of the
practitioner who must be self-taught, as well as the student who will be
guided through the material. Consequently, special efforts were made to
make the text self-contained and to provide many examples to illustrate
usage. The text presupposes a working knowledge of mathematics and an
engineering background at the level of civil engineering juniors; however,
no previous formal training in probability or statistics is required.

A number of computer program listings are included as figures in
the last sections to the chapters. They were written so as to be user-
friendly (interactive) in portable Fortran 77. All programs have been
used successfully by the author and his students at Purdue University.
Even so, there is no guarantee that they are free of bugs. Although
the text presupposes that the reader has the capability of running the
computer programs, many graphs and charts are presented that permit
direct determination of results.

Since much of the material and many of the results in this book
are new (or are not readily obtainable), it is important that the reader
have available exercises and examples that promote assimilation and
application. Consequently, approximately 250 problems are given at the
end of the chapters {(most with answers), as well as over 140 worked
examples.

The author would like to acknowledge his indebtedness to the many
students, associates, and colleagues who attended his lectures and who
through their participation and comments led to the development of this
book. To Catherine Ralston go special thanks for her splendid assistance
in the preparation of the manuscript. Finally, the author would like to
express his-appreciation to Joan Zseleczky for her encouragement and
to Ingeborg Stochmal for her editorial acumen.

Milton E. Harr
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Chapter

Elements of Probability

1.1 Introduction

The trend in civil engineering today, more than ever before, is toward
providing economical designs at specified levels of safety. Often these
objectives necessitate a prediction of the performance of a system for
which there exists little or no previous experience. Current design pro-
cedures, which generally have been learned only after many trial and
error iterations, lacking precedence, often fall short of expectations in
new or alien situations. In addition, there is an increasing awareness
that the raw data, on which problem solutions are based, themselves
exhibit significant variability. It is the aim of this book to demonstrate
how concepts of probability theory may be used to supplement the civil
engineer’s judgment in such matters.

The primary function of engineering is to accommodate the transfer
of energy through a system. The kind of energy generally specifies the
type of engineer: aeronautical, agricultural, biomedical, chemical, electri-
cal, industrial, mechanical, nuclear, and that of the civilian population.
In this sense the system is a filter that is required to transform the
induced applied (external) energy to tolerable levels so as to accomplish
an intended purpose. It is within this framework that the civil engineers
plan, design, fabricate, construct, and maintain buildings, bridges, dams
and levees, foundations, power plants, offshore structures, tunnels, aque-
ducts, highways, airports, harbors and ports, canals, pipelines, sanitary
facilities, pavements, earth embankments, excavations, and so on.

Analysis is the central theme of civil engineering design. It is the ide-
alization of a system, which admits to simple but logical mathematical
solution and still contains the essential elements of the actual sys-
tem. Traditionally, induced loadings are modeled by completely defined,
simple geometric or analytical representations. Material characterization

- m—



2 Reliability-Based Design in Civil Engineering

is assumed to be complete, and inherent properties are taken to be stable
and uniquely defined. Until very recently it was the objective of devel-
oped analytical procedures to provide the civil engineer with methods
that could be used in making value judgments concerning likely scenar-
ios while working at a desk with a piece of paper, a pencil, and a slide
rule.

Induced loadings to civil engineering systems are never completely
known. Among these are uncertainties with respect to the frequency and
intensity of earthquakes; the flow of surficial water and groundwater
and of toxic and hazardous materials; the action and variability of
wind and waves, heat and cold, freezing and thawing, chemical and
environmental factors; vibrations and shock; vehicular and pedestrian
traffic, its distribution and weights; construction equipment, sequencing,
and processes. Almost all induced loadings are random, and all systems
may often be subjected to overloads.

All engineering materials contain microcrystalline imperfections or
faults called dislocations (Radavich, 1980), which initiate cracks or per-
mit their propagation. No two manufactured objects can be exactly
the same. To date no general theory exists that relates the strength
to the deformation of a body. No single framework accounts for such
common phenomena as plastic flow and brittle fracture of metals, fa-
tigue and creep, elastic and inelastic response. Defects exist from at
least the atomic packing level up through the largest of manufactured
objects. Bourgault (1980) quotes S. A. Wenk, who gave the following
definitions:

Material—collection of defects
Acceptable material—fortuitous or organized collection of defects
Unacceptable material—unfortunate collection of defects

All civil engineering systems are founded on, or in, the soil, which, in
turn, is composed of complex aggregations of discrete particles, in arrays
of varying shapes, sizes, and orientations. Voids between the particles
are of various orientations and sizes, and may serve to transport several
fluids.

Figure 1.1.1 compares the elements of the civil engineering design
process to the links of a chain. One first obtains samples from which pa-
rameters (properties) are extracted using established testing procedures,

Sampling  Testing Formulas Experience

Build with
confidence

Figure 1.1.1 Model of the civil engineering design process.
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which are then substituted into appropriate formulas. Other variations
and other linkages are possible, and not all links apply to all civil en-
gineering systems. It is the last link of the metaphorical chain that
has special importance in the present context. The fourth link, stated
as experience, is generally specified in civil engineering as a factor of
safety and is very much problem-oriented. For example, the stability
of the upstream slope of an earth dam requires minimum (tolerable)
factors of safety ranging from 1.05 for rapid drawdown to 10.0 or more
for an adequate impervious upstream blanket, with a factor of 1.3 for
long-term stability. The factors are measures that were discovered with
great difficulty and only after considerable experience with many similar
structures. Clearly, lacking prior experience, conventional design proce-
dures may be sadly deficient in new situations. However, within the
established design technology of today, these factors present consider-
able information as to the adequacy of a system and represent important
indexes of performance. _

The ways in which civil engineering systems fail, the occurrence and
frequency of failure, its economic and social consequences, demonstrate
considerable differences between hypothetical and actual systems. In-
duced loadings, site characterization, properties of materials, developed
formulations and procedures, and the adequacy of predicted sizes and
shapes of the system and its elements are far from certain. All are
subject to complex interrelationships, material defects, structural defi-
ciencies, human errors, and hence to varying degrees of randomness. A
guiding motto proposed by Alfred North Whitehead (1920) is: “Seek
simplicity and distrust it.”

What is failure? A bridge or building collapses: it is failure. A dam
is breached: it is failure. Is it failure if a section of a heavily traveled
highway is “jammed” during rush hours, but operates adequately at
other times? Add to this that the money that could have been used
to improve this section of road was used to make another part of the
system safer.

The failure of a system is assessed by its inability to perform its
intended function adequately on demand for a period of time and under
specified conditions. Its antithesis, the measure of success, is called
reliability. Failure is highly qualitative and subjective; reliability, on the
other hand, can be defined, quantified, tested, and confirmed.

The customary engineering definition of reliability is as follows: Re-
liability ts the probability of an object (item or system) performing its
required function adequately for a specified period of time under stated
conditions. This definition contains four essential elements:

1. Reliability is expressed as a probability.
2. A quality of performance is expected.
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3. It is expected for a period of time.
4, Tt is expected to perform under specified conditions.

That any meaningful scale of success or failure must be addressed in
probabilistic terms is evident from the variability and lack of determinacy
of civil engineering systems. Probabilities are objective measures of the
likelihood of occurrence of random events and as such provide quantita-
tive assessments of system adequacy. It is the purpose of reliability-based
design to produce an engineered system whose failure would be an event
of very low probability. Probabilities of failure are the most significant
indexes of reliability. Being objective, they admit directly to comparisons
of the risk of failure of different systems, or of the components of a single
system, and under varying operating conditions. This capability for both
traditional and untried scenarios is the very fabric of civil engineering
design.

1.2 Axioms

Within the context of engineering usage there are two primary defi-
nitions of the concept of probability: relative frequency and subjective
interpretation.

Historically, the measure first offered for the probability of an outcome
was its relative frequency: if an outcome A occurs T times in N equally
likely trials, the probability of the outcome A is

PlA] = % (1.2.10)

Implied in Eq. (1.2.1a) is that the probability of an outcome A equals
the number of outcomes favorable to A (within the meaning of the
experiment) divided by the total number of possible outcomes, or
favorable outcomes
total possible outcomes

P[A] = (1.2.15)

This definition was first formulated by Laplace in 1812.

Example 121 Find the probability of drawing a red card from an ordinary
well-shuffled deck of 52 cards.

Solution Of the 52 equally likely outcomes, there are 26 favorable outcomes (red
cards). Hence,

Pldrawing red card) = -:—g- = _;.
Understood in the example is that if one were to repeat the process a

very large number of times, a red card would appear in one-half of the
trials. This is an example of the relative frequency interpretation. Now,
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what meaning can be associated with the statement: the probability of
failure of a proposed structure is 1% (P[failure] = 0.01)? The concept of
repeated trials is meaningless; the structure will be built only once, and
it will either fail or be successful during its design lifetime. It cannot
do both. Here we have an example of the subjective interpretation of
probability. It is a measure of information as to the likelihood of the
occurrence of an outcome. _

In engineering applications, subjective probability is generally more
useful than the relative frequency concept. However, the basic rules
governing both are identical. As an example, we note that both concepts
specify the probability of an outcome to range between, and to include
numerical values of, zero and one. The lower limit indicates that there
is no likelihood of occurrence; the upper limit corresponds to a certain
outcome, that is, the probability of an outcome A ranges between zero
and unity,

AxiomI 0<P[4] <1 (1.2.2q)
The certainty of an outcome C is a probability of unity,
Axiom II P[C] =1 (1.2.2b)

Equations (1.2.2a) and (1.2.2b) provide two of the three axioms of the
theory of probability. The third axiom requires the concept of mutually
exclusive outcomes. Two outcomes are mutually exclusive if they cannot
occur simultaneously. The third axiom states that the probability of the
occurrence of the sum of a number of mutually exclusive outcomes A,
Az, ..., Ay is the sum of their individual probabilities (addition rule),
or

Axiom III P[4, + Az + -+ An] = P[As] + PlAs] +--- + P[An](1.2.2¢)

As a very important application of these axioms consider a proposed
design for a structure. After construction, only one of two outcomes can
occur in the absolute structural sense: either it is successful or it fails.
These are mutually exclusive outcomes. They are also exhaustive in that,
within the sense of the example, no other outcomes are possible, Hence,
the second axiom, Eq. (1.2.2b), requires

Plsuccess + failure] = 1
Since they are mutually exclusive, the third axiom specifies that
Plsuccess| + P|[failure] = 1

The probability of the success of a structure is its reliability R. Designat-
ing the probability of failure as p(f), we have the important expression

R+p(f)=1 (1.2.3)
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Example 122 Only three contractors, A, B, and C, are bidding for a contract. A
has half the chance that B has; B is two-thirds as likely as C to be awarded the
contract. What is the probability for each to get the job if only one of them will
be successful? :

Solution Since there are only three contractors and one must be successful,
P[A+B+Cl=1

As only one will be successful, they are mutually exclusive,
P[A] + P[B]+ P[C]| =1

Given P[A] = P[B]/2 and P[B] = 2 P[C]/3, we have

P(B) 3 _

whence, P[A] = 1, P[B] = Y3, and P[C] = 1.

1.3 = Conditional Probability

A useful graphic representation of outcomes is the Venn diagram. Out-
comes are usually shown as simple geometric shapes. Examples are given
in Fig. 1.3.1. The large rectangle represents the universal set, or sample
space, S. The rectangles labeled P, and P; and the circle M designate
subsets of outcomes. For example, the sample space may represent all
the concrete delivered to a highway pavement construction site. P, and
P, may correspond to the concrete produced at two plants.

N D S

(a)

(b}

Figure 1.3.1 Venn diagram. (2) Sample space for
two outcomes. (b) Sample space for three out-
comes.
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If the rectangular region S represents the total collection of pertinent
probabilities, P[S] = 1. The probability associated with a particular
outcome is the sum of the elementary outcomes that are contained within
the respective regions in the Venn diagram. For example, suppose the
dots shown in Fig. 1.3.1a represent the percentage of concrete delivered
at a highway pavement construction site during the entire job. The
order of delivery is not significant. Then the percentage of the concrete
provided by a particular plant (P, or P,) would be the sum of the
percentages contained within its designated region. Two plants P, and
P, are assumed here to provide all the concrete.

Suppose test results on concrete cylinders judge the concrete to meet
specified standards if the 28-day unconfined compressive strength is not
less than 4500 Ib/in>. Continuing, suppose that plant P, produces 66%
and plant P, 34% of the concrete used, and that 90% of the concrete
produced from plant P; met the standard, whereas 95% did so from
plant P,. These suppositions indicate that, on the average, approxi-
mately 92 tests per 100 will prove adequate [0.66(90) + 0.34(95) ~ 92].
Stated another way, the probability that a sample of concrete cho-
sen at random will meet the specification is approximately 0.92. On
the other hand, if all the concrete was obtained from plant P,, the
probability of getting substandard concrete would be 0.10. It is ap-
parent that information as to where the concrete was produced will
affect the probability of a sample meeting standards. Such proba-
bilities are said to be conditional, that is, the occurrence of one
outcome (information as to which plant produced the concrete) will
modify the chance of the occurrence of another outcome (the proba-
bility that a number of test samples of the concrete will test above
standard). Before specifying the origin of the concrete, the uncon-
ditional probability was 0.92 that a test sample would meet the
specification.

The conditional probability of an outcome A, given that an outcome
B has occurred, denoted by P[A|B], is defined as

P[AB]
P[B]

where P[AB] denotes the probability that both outcomes A and B will
occur and P[B] is the probability of the occurrence of outcome B. If
P[B] = 0, the conditional probability is not defined. For the foregoing
example, if the region M in Fig. 1.3.1b is designated as the region of
meeting standards, the probability of doing so for plant P,, P[M 1P1], is
the number of elementary events common to both M and P,, P[MP,],
divided by the sum of the elementary events in Py, or

_ P[MP]

- PA]

P[A|B) = (1.3.1)

P[M|Py]




8 Reliability-Based Design in Civil Engineering

The subset M here denotes all elementary events (tests) that will meet
standards from both plants P, and P,. It is seen that for the conditional
probability with regard to plant P;, the sample space reduces to that of
P,, and P[MP,] is the probability of the joint occurrence, or intersection,
of M and P,. .

Example 1.3.1 Find the probability of drawing the ‘king of hearts (a) from an
ordinary well-shuffled deck of cards and (b) given that a heart was drawn.

Solution (a) Here we have the unconditional probability P[K}] = 1/52. (b) The
sample space has been reduced from 52 elementary events (cards) to 13 (only
hearts). Hence, P[K,|h] = 1/13.
Equation (1.3.1) also suggests
P[AB] = P[B|P|A|B]
or P[AB] = P[A|P|B|A] (1.3.2)
Two outcomes are said to be independent if the occurrence or nonoc-

currence of one has no effect on the probability of occurrence of the
other. Independence between A and B requires

P[A|B] = P[4]
and P[B|A] = P[B] (1.3.3)
Hence, if A and B are independent, Egs. (1.3.2) become

P[AB] = P[A|P|B] (1.3.4)

Example 1.3.2 What is the probability of drawing a king in each of two draws
from a deck, (a) without replacement (the card drawn is not returned to the deck
before the next draw) and (b) with replacement?

Solution (a) Here the second draw depends upon the results of the first draw.
Thus,

PK1Ky] = P[K]P[K2|Ky] = % (5_31) -

(b) Replacing the card, we obtain independence and

PIK Ky} = P[K,|P[K2] = 54_2 (%) _ %

For a number of independent events A, A:, ..., Ay, Eq. (1.3.4)
generalizes to (multiplication rule)
P[A1A2 A3 - -- An| = P[A1)P{As] - - - P[AN] (1.3.5)

Example 1.3.3 A fair coin (P[head] = P[tail] = !/) is tossed three times; what
is the probability of getting three heads?
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Solution Assuming each toss is independent of the others, Eq. (1.3.5) produces

Plthree heads] = 1/2 (1/2) (Y2) = (12)% = s

Figure 1.3.2 shows the eight outcomes of the three-step process of
tossing a fair coin three times. Each outcome is an elementary event with
a probability of occurrence of 1. Hence, the probability of obtaining two
heads in three tosses P[HHT + HTH + THH)] = P[HHT)] + P[HTH] +
P[{THH] =3 + 3 + 1 =3f. It should be evident why the representation
in Fig. 1.3.2 is called a tree diagram. The total number of outcomes is
the same as the number of paths, which is 2 x 2 x 2 = 8. A tree diagram
such as shown in Fig. 1.3.2 is, in a sense, a graphic multiplier.

Example 1.3.4 How many possible outcomes are there for drawing five cards from
a 52-card deck?

Solution There are 52 possible outcomes for the first card, 51 for the second, 50
for the third, and so on. Hence, there are

52 x 51 X 50 X 49 x 48 = 3.12 X 10® possible hands

Granted replacement and hence independence, we would have

525 = 3.80 x 10® possible hands

Equaﬁons (1.3.2) give the probability of the joint occurrence of two
dependent outcomes A and B. These can be generalized. For three
dependent outcomes A, B, and C we would have

P[ABC] = P|A|P|B|A|P|C|AB] (1.3.6)

where P[C|AB] is the probability that outcome C occurs given that the
joint outcomes of A and B have already occurred.

Example 1.3.5 Find the probability of drawing hearts on three consecutive draws,
without replacement, from a standard deck of cards.

Start
% Y%

" T
0 Y
H . T H T
1/2/\/: ’/z/\/z '/:/\’/z V/\/,(
H T H T H T H

(HHH) (HHT)  (HTH) (HTT) (THH) (THT) (TTH) (TTT)

Figure 1.3.2 Tree diagram of three-step tossing of a fair coin.



