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Preface

This book is intended as an introductory text on the subject cf Lie groups
and algebras and their role in various fields of mathematics and physics. 1t is
written by and for researchers who are primarily analysts or physicists, not
algebraists or geometgys. Not that we have eschewed the algebraic and geo-
metric developments. But we wanted to present them iz a concrete way and
to show how the subject interacted wiih physics, geometry, and mechanics.
These interactions are, of course, manifold; we have discussed many of them
here-—in particular, Riemannian geometry, elementary particle physics, sym-
metries of differential equations, completely integrable Hamiltonian systems,
and spontancous symetry breaking,

Much of the mifiterial we have treated is standard and widely available; but
we have tried to steer a course between the descriptive approach such as found
in Gilmore and Wybourne, and the abstract mathematical approach of
Helgason or Jacobson. Gilmore and Wybourne address themselves to the
physics community whereas Helgason and Jacobson address themselves o
the mathematical community. This book is an attempt to synthesize the two
points of view and address both audiences simultancously. We wanted to
present the subject in a way which is at once intuitive, geometric, applications-
oriented, mathematically rigorous, and accessible to students and researchers
without an extensive background in physics, algebra, or geometry.

Our operating assumption is that our reader has a good founding in linear
algebra and some familiarity with the basic ideas of group theory which are
traditionally taught at the undergraduate level. For example, we assume
he/she knows what a normal subgroup is and how a quotient group is formaed.
We aiso assume the reader is familiar with such elementary topological
notions as continuity, compactness, and sinple connectivity. We discuss
in some detail the temsor calculus on manuolds, but we bave avoided the
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technicalities of differentiable structures on manifolds. Some knowledge of
differential geometry and tensor analysis would be helpful for a complete
understanding of some of the specialized topics in geomeiry and mechanics.

Whether this book is a public success or not, it has certainly been a private
one. In bridging the “jargon gap” between mathematician and physicist we
have personally gained a deeper understanding of the material. One outcome
of this process, for example, is our presentation of the material in Chapter 5
traditionally known as “tensor calculus on manifolds.” We have presented
that material here in the physicist’s language of frame invariance, not the
mathematician’s notation of pull-backs (¢* and ¢, and all that).

We have tried to introduce and use the language of differential forms in a
way that will induce the physicist to learn the approach. The calculus of
differential forms has had many promoters—the chief one being Cartan
himself, and that alone should be ample recommendation. We discuss in some
detail the Maurer—Cartan forms on a Lie group and their applications. For
example, in §26 (Geometry “a la Cartan”) we explain Cartan’s derivation of
the structure equations of Riemannian manifolds from the Maurer—Cartan
equations of their isometry groups. This leads, for eéxampk, to the structure
equations of surfaces of constant curvature, as well as to the structure equa-
tions of a surface embedded in R>. It touches upon Cartan’s brilliant theory
of symmetric spaces, a topic which we have treated all too briefly.

The use of differential forms has not yet achieved widespread acceptance
by the physics or applied mathematics community, but appears to be gaining
ground. Differential forms, being dual to vector fields, are necessarily more
abstract and less easily grasped as fundamental intuitive objects. Yet the
exterior differential calculus is an excellent form of bookkeeping that takes
into account orientation, provides the correct language for multidimensional
integration, and is “frame independent”—that is, invariant under arbitrary
coordinate transformations. It is perhaps worthwhile comparing the situation
with the acceptance of Gibbs’ vector notation, which (according to Struik in
his text Differential Geometry) “after years of competition with other notations
seems to have won the day....” This in 1950! It appears that differential forms
are still competing but have not yet won the day.

We have benefited from many discussions with our colleagues, in particular
Leon Green, Robert Ellis, Paul Garrett, and Sid Webster at the University of
Minnesota. We also thank the students who took the course at Minnesota,
who asked so many good questions, and made so many valuable comments:
Russall Brown, Susan Fischel, David Gregg, Gerald Warnecke, and Vigtor

Zurkowski. "
Minneapolis, Minnesota D.H. SATTINGER
Manhattan, Kansas OAL."WEAVER

August 1985
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PART A

LIE GROUPS AND ALGEBRAS






CHAPTER 1

Lie Groups

1. Continuous Groups; Covering Groups

Sophus Lie (1842-1899) and Felix Klein (1849-1925) were students together
in Berlin in 1869-70 when they conceived the notion of studying mathematical
systems from the perspective of the transformation groups which left these
systems invariant. Thus Klein, in his famous Erlanger program, pursued the
role of finite groups in the studies of regular bodies and the theory of algebraic
equations, while Lie developed his notion of continuous transformation groups
and their role in the theory of differential equations. Lie’s work was a tour de
force of the 19th century, and today the theory of continuous groups is a
fundamental tool in such diverse areas as analysis, differential geometry,
number theory, differential equations, atomic structure, and high energy
physics. This book is devoted to a careful exposition of the mathematical
foundations of Lie groups and algebras and a sampling of their applications
in differential equations, applied mathematics, and physics. .

In this first chapter you will be introduced t&a variety of important Lie
groups, together with some of their properties.

A topological group is a group which is also a topological space (so that
ideas such as continuity, connectedness and compactness apply) in which the
group operations are continuous. A Lie group is a topological group which
is also an analytic manifold on which the group operations are analytic. We
will make this notion more precise later on.

The simplest example of a Lie group is the real line R' with ordinary
addition as the group operation. Similarly, R” with the usual vector addition
is a commutative (abelian) Lie group. Continuous matrix groups, or more
generally, continuous groups of linear transformations of a vector space, are
called linear Lie groups. For example, the set of all non-singular n x n matrices
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forms the group known as GL(n, R) or GL(n, C) depending on whether the
entries are real or complex. The subset of all # x n matrices with determinant
I forms a group called the unimodular or special linear group, which is denoted
by SL(n,R) or SL(n, C). The orthogonal group, O(n), is the group of r x n of
matrices that satisfy 44" = 1. These are a few examples of the so-called
“classical” groups; we shall give a complete list at the end of this chapter.

T'he matrices
a = 0 1 ) ae

/

form a linear group; and moreover,
LaLb = Lu+b‘

This group 1s thus isomorphic to R* and forms a representation of R' by 2 x 2
matrices. In general, a representation of a group ® on a vector space V is a
homomorphism from ® into the invertible linear transformations of V. That
is a = t, in such a way that

aoh - tyt,.

These representations need not always be matrix representations. For example
we may represent R on the infinite dimensional vector space C*(R) (the
infinitely d:fferenable functions on the line) by

(T.f)x) = f(x + a).

The idea of representation helps to clarify the subtle but sometimes important
distinction between an abstract group and a variety of its realizations. Thus
R!, the set of matrices L,, the translations T}, and the geometric translations
along R! itself are all distinct but isomorphic representations of the same
abstract group. ¥

An example of a non-abelian group is the group of upper triangular
matrices
‘1 a b)
0 1 c) a, b, ceR.
0 0 1

This is isomorphic to the Heisenberg group which plays a fundamental role in
quantum mechanics (see Chapter 4}.

The matrices .
cosf —sinf
R(©) <sin 6 cos0 ) €

form a gi‘oup, and R(A)R(y) = R(6 + y). These are the rotations of the plane,
the group SO(2). This group may also be realized as S*, the unit circle in the
complex plane with multiplication as the group operation.
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The groups R* and S! are intimately related, for the mapping p: R' - §!
defined by p(x) = e?™* is a continuous homomorphism from R* onto S. The
transformation is locally one-to-one; (see Fig. 1.1) but globally it is infinite-
to-one, for all points x + n (with n an integer) map onto the same point ¢**>
in S'. The kernel of p is Z, the discrete group of integers, and S! is isomorphic
with the quotient group R'/Z. We say that each z lifts to an infinity of points
in R! (see Fig. 1.1). Moreover, the unclosed path 0 <t < 1 in R' is mapped
onto the closed path z(f) = ¢2™" in S*. The latter cannot be shrunk to a point
while remaining in S*. Yet any ciosed path in R! can be shrunk down to a
single point. We say that R' is simply connected while S' is not.

{ 3 { 3} e ) {
</ X 7 \ 74 w

Lf

Figure 1.1. The neighborhood U of ze S! lifts to an infinite collection of disjoint
intervals in R!, each of which is mapped 1-1 onto U by p. We say p is locally
one-to-one.

in this example, R' is the universal covering group of S'. The universal
covering group of a connected topological group G is a simply connected
topological group G together with a continuous homomorphism p from G
onto G which is locally one-to-one. Such a universal covering group exists for
every connected topological group, and in particular for every Lie group, and
is unique up to isomorphism. Moreover G/Kerp ~ G.

Universal covering groups, their representations, and their homomorphisms
into non-simply connected groups, are fundamental to our understanding of
symmetry in quantum mechanics. (See Section 1 of Wigner’s 1939 paper for
a discussion of this point, Wigner [1].) For example, particles with half-integer
spin—such as electrons, quarks, *He nuclei— transform according to spinor
representations of the rotation and Lorentz groups. These are double valued
represehtations of the geometrical symmetry groups, but are single-valued
representations of the covering groups.

In this chapter we shal! construct the universal covering groups and the
covering homomorphisms for the rotation and Lorentz groups. Readers inter-
ested in a more careful treatment of covering groups can profitably consult
Pontryagin, Chevalley, or Singer and Thorpe.

EXERCISES

1. Construct the covering homomorphism and the covering groups of S* having the
form R!/pZ where pZ is the set of integral muitiples of the integer p. R' is the
universal covering group of these groups. Construct a five valued representation of
St
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2. What is the universal covering group of the torus, T" = §' x §' x --- x §', the
group whose elements are (z,, z,, ..., z,) with |z,| = 1?
3. A matrix U is called unitary if UU* = I. Show that the n x n unitary matrices form

a group, called U(n). Show that the unitary matrices of determinant 1 form a
subgroup, called SU(n). Show that SU(2) consists of all matrices of the form

« B 2
(_ﬂ- a) laf? + B = 1.

2. The Rotation Group in R?

The group of rotations of three dimensional Euclidean space is called SO(3).
Every rotation R e SO(3) can be parameterized by an axis of rotation A and
the angle 0 of rotation about this axis: R = (A, #). The axis requires two angles
(o, B) for its specification, so three parameters are needed to specify a general
rotation: SO(3) is a three parameter group. A useful visualization of the
elements of SO(3) is to picture a solid ball of radius n. A point P inside the
ball a distance 0_£rom the origin, O, represents the counterclockwise rotation
about the axis OP by an angle 6. Since the parameters range over a com-
pact set, SO(3) is a compact group; the origin 0 corresponds to the identity
transformation. '

A moment’s reflection shows that we really do only require a ball of
radius &, not 27, but that antipodal points on the surface represent the same
rotation. This enables us to show that SO(3) is not a simply connected
space—see path # 2 in Fig. 1.2: it is not contractible to a point. We will find
the simply connected covering group of SO(3) later in this chapter.

Another realization of SO(3) follows from the observation that rotations
are linear transformations of R* that preserve the inner product

3
(a,b) =Y a'b".
i=1
If R is the matrix of the linear transformation then

(Ra, Rb) = (a, b),
)
R'R =1.

Path #1 Path #2
0->0-0 0->0=0'-0

0’

Figure 1.2
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This relation shows that R is non-singular, SO

R'=R71

These are the orthogonal matrices. We have actually gotten a bit More than
SO(3) this way, for R = —1 is orthogonal but is an inversion rather than a

rotation: it reverses orientation of space. The group of orthogonal 3 x 3

matrices is denoted by O(3), while the rotations are SO(3), the special or-
thogonal matrices with determinant + 1. The group O(3) is not connected but
is the union of the sets {Re SO(3)} and { — R, Re SO(3)}. The identity, 1, is in
SO(3), and since SO(3) is connected (although not simply connected) it is called
the connected component of the identity in O(3).

For later reference we display the orthogonal matrices corresponding to
counter clockwise rotations of R*® about the coordinate axes:

1 0 0
Ri(@)=|0 cosa —sina |,
0 sinx cosa
cosf 0 sinf)
R,(B) = 0 10 |, (1.1)
—sinffi 0 cosf
cosy —siny 0
Rs(y)=| siny cosy O
0 0 1

EXERrCISES ON O(3)

1. Show that A — det A is a homomorphism of O(3) into the group Z, = {+1, —1}
with multiplication as the group operation. What is the kernel of this homomor-
phism? What are the cosets of O(3) modulo that kernel? Show that O(3) is not

connected.

2. Given AeSO(3) show that 1 is always an eigenvalue. What is the geometrical
significance of the eigenvector?

3. Show that SO(3)is “doubly connected” in the sense that path # 2 (Fig. 1.2) traversed
twice can be shrunk to a point. Begin with the sequence of deformations shown

below.

Q Q] Ql
Qz QZ

0

sy
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4. Projective 3-space, P5(R), is the set of lines through the origin in R*. Open sets
are open cones of lines. Show that P4(R) is homeomorphic to the three sphere S*
in R* with antipodal points identificd. Then show that this spbere is homeomorphic
to the solid ball in R? with antipodal points on the surface identified, that is, to SO(3).

3. The Mobius Group

The linear fractional transformations, or Mobius transformations, M, form
the group of conformal transformations which map the extended complex
plane one-to-one onto itself. An element of this group is a transformatlon
m: C - C with

+ b

+E, ad—bC#O

m(z) = -
6z

The condition ad — bc # 0 assures that the transformation is invertible. There
a homomorphism p from GL(2, C) into M given by

a b) az+b
piy d)—»m(z)-: —.

cz+d
The reader may check that p indeed is a homomorphism. For all A the matri-

b
ces i(j d> in GL(2,C) go into r(hc same Mobius transformation. Since
fa b 5 a b .
det{ 4 1= A* det d we may always chose 4 in two ways so that
€ C

b
the determinant of l(a d) is +1. Thus each Mobius transformation is
c

covered by two matrices of determinant one, i.e. by two elements of SL(2, C).
Our homomorphism shows that M cannot be simply connected, for a path
1 0 -1 0
from <O l> to < 0 l) in SL(2, C) is mapped by p onto a closed path in
M which cannot be shrunk to a point. SL(2, C) is a covering group of M, and
SL(2,C)is simply connected (see exercise 6, p. 18), so SL(2, C) is the universal
covering group of M.

= O/
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The homomorphism from SL(2,C) to the Mobius transformations was
obtained by Klein and Cayley in the following way. Let u and v be complex
numbers and suppose

u =au+ bv
v = cu + dv.
Putting z = u/v and w = «'/v’ we obtain

az + b
W= ————
cz+d

: u . .
The two component vectors ( ) have come to be called spinors in physics and
v

are used to describe particles of spin 1/2.
The set of M&bius transformations with a, b, ¢, d real form a subgroup of
Mobius transformations which preserve the upper half plane: if

az+b

W= ——, a,b,c,deR,
cz+d

. b
then Imw > 0 whenever Imz > 0. The associated matrices (a d) form the
subgroup SL(2, R) of SL(2, C). d
The upper half plane with the metric
_dx? +dy? dzdz

ds? Y = B
* & (Im 2)?

is known as the Poincaré half plane. It is a two dimensional Riemannian
manifold with constant Gaussian curvature K = — 1 (see Singer and Thorpe,
Chapter 7). The Mébius transformations we discussed above, i.e. those which
come from SL(2,R), are in fact isometries of this manifold. That is, they
preserve the metric tensor: if

b
w2 abcdeR, ad—bc=1
cz+d
then
dwdw _ dzdz
(Imw)? ~ (Imz)?’
EXERCISES

1. Prove that SL(2, R) preserves the upper half plane, and the metric givgn gbove.
2. Which SL(2, R) transformations preserve the norm |g|* + |v|? of a spinor <u>?
v

3. Why isn’t GL(2, C) the universal covering group of M?

tsd
'
.’;‘



