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Preface

This volume derives from a workshop on differential geometry, calculus of vari-
ations, and computer graphics at the Mathematical Sciences Research Institute in
Berkeley, May 23-25, 1988. The meeting was structured around principal lectures
given by F. Almgren, M. Callahan, J. Ericksen, G. Francis, R. Gulliver, P. Hanra-
han, J. Kajiya, K. Polthier, J. Sethian, I. Sterling, E. L. Thomas, and T. Vogel.
The divergent backgrounds of these and the many other participants, as reflected
in their lectures at the meeting and in their papers presented here, testify to the
unifying element of the workshop’s central theme.

Any such meeting is ultimately dependent for its success on the interest and
motivation of its participants. In this respect the present gathering was especially
fortunate. The depth and range of the new developments presented in the lectures
and also in informal discussion point to scientific and technological frontiers be-
ing crossed with impressive speed. The present volume is offered as a permanent
record for those who were present, and also with a view toward making the material

available to a wider audience than were able to attend.

We wish to express our appreciation to Irving Kaplansky, Director of MSRI. for
his dedicated, personal role in making the workshop a reality, and to the MSRI and
Lawrence Berkeley Laboratory staff for their expert assistance on the many details
of the arrangements. The workshop received generous financial support from MSRI
and LBL, and thereby from the National Stien¢e Foundation and the Department
of Energy, which we gratefully acknowledge.

We are indebted to Alvy Ray Smith for joining us on the organizing committee.
Paul Concus (Chairman)

Robert Finn
David Hoffman
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Multi-functions Mod v

FREDERICK J. ALMGREN, JR.

Abstract. We extend the theory of current valued multi-functions to multi-
functions mod ».

§1. Introduction.

This note is an introduction to and advertisement for current valued
multi-functions. It is also an announcement and preliminary exposition of
a corresponding new theory of multi-functions mod ». Such multi-functions
provide a novel perspective on various important problems in geometry and
the calculus of variations in the context of geometric measure theory. They
are indispensable in proofs of several basic theorems in geometric measure
theory [5][9] and have provided a setting for both original and alternative
proofs of other pivotal results [2][15]. They additionally are a device for
computational geometry and its associated graphics [3][7] (see also [8]).
The first use of such functions in the context of geometric measure theory
was in [1). The basic reference for._current valued multi-functions is [2]
(where they are called multiple-valued functions); expository accounts ap-
pear in [3][7]. Applications in complex analysis are set forth in [4][12][16].
One important example of a multi-function arises when one regards the
roots of a (real or complex) polynomial as a function of its coefficients; see,
for example, [10, 4.3.12]. The general theorj' of current slicing appears in
[10, 4.3]; [13] is an illustrated introduction to geometric measure theory in
geﬁeral.

We here set forth multi-functions in the context of polyhedral chains
with coefficients either in the integers or in the integers modulo ». The
extension to general rectifiable currents or flat chains mod v is then rela-
tively straightforward for those knowledgeable in the subtleties of geometric
measure theory and perhaps irrelevant for the development of discrete al-

gorithms in the geometric calculus of variations.

Supported in part by NSF grant DMS 84-0129-A02
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Associated with piecewise affine mappings f, g: R" — RN are induced
chain mappings ‘
fi» 93 IPL(R™) — IP,(R")

of degree 0 between chain complexes of integral polyhedral chains. In par-
ticular these mappings respect the additive structure of IP.(R"). Since
IP,(RVN) is also a group under addition we can define an addition of such
chain mappings, e.g.

(2fy + wgy): IPL(R") = IP(RN), (zfy + wgy)(T) = z(fiT) + w(gyT),

whenever z, w,€ Z and T € IPx(R"). Caution: (fy + gy) does not equal
(f + g)y because this latter addition uses addition in R" rather than in
IP.(RY). It turns out that the mapping (zf; + wg;) is determined by the
its action on single point masses [p]. The multi-function F associated with
this sum'is

F:R" = IPy(R"), F(p) = (zf; +wgy) [Pl = z[f(p)]+wle(p)], - p € R".

In order to induce a chain mapping on IP,(R") it is not necessary that
our F come from such f’s and g¢’s. Indeed, general Lipschitz continuous
mappings R™ — IP(R"), locally of bounded mass, also naturally induce
chain mappings on IP,(R™). I do not know the extent to which general
Lipschitz multi-functions can be approximated by sums of “single valued”
maps. Multi-functions were studied extensively in [2]. As indicated above
we will review some of these notions in the present context of polyhedral
chains and piecewise affine multi-functions and show that they remain valid
for polyhedral chains with coefficients in the integers modulo v when the
F’s take values in zero dimensional polyhedral chains mod v

§2. Simplicial decompositions and piecewise affine mappings.

(1) By a 0 simplez in R™ we mean a point iz R”. By a k simplez in R"
we mean the convex hull A of some collection of k+1 points pg, p1, .- - , Pk
in R™ which do not lie in any (k — 1) dimensional affine subspace of R".
The points pg, pi, ..., pr are called the vertices of A. - -

(2) When we say that SX, = SX, USX, U...USX, is a simplicial
decomposition of R™ we mean that
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(i) SX, is a discrete set ofspoints in R™ (necessarily countably infinite and
unbounded).

(ii) SX,, is a family of n simplexes A in R™ whose union is R" such that
the vertices of each such simplex A are exactly those members of $Xq lying
within A.

(iii) For k =1, ..., n — 1 each SXj is the family of all £ simplexes Aj in
R" whose vertices are a subset of the vertices of some member A, of SX,,.

(3) H* denotes Hausdorff’s k dimensional measure in R™. H¥(Ay) agrees
with another other reasonable definition of the k dimensional area of a
k simplex Ag. t

(4) A function f: R" — RN is called affine on A provided the restriction
of f to A is also the restriction to A of some affine mapping R® — R".
A function f:R™ — RY is called piecewise affine provided there is some
simplicial decomposition SX, of R™ such that f is affine on each n simplex
in SX,,. Piecewise affine functions are continuous.

(5) It is sometimes useful to factor a mapping through its graph space.
With this in mind, we here fix

o:R*xRY - R", ILR"xR"Y->R"
as projections on the factors indicated and deiéine
lgn0a f:R" > R" xRY,  (1r~ > f)(2) = (=, f(2))
whenever f maps R™ to RN, Clearly
Yo(lpatx f)=1g» and IMo(lg~b<a f)=f.
The point of such factorizations is that (1g» < f) is one-to-one ;nrhile II is
infinitely differentiable.
§3. Common refinements of simplicial decompositions.

The following proposition is useful when one wishes to make definitions

based on simplicial decompositions.



PROPOSITION.

(1) Suppose S is any finije collection of simplexes in R" of various di-

mensions. Then there is some simplicial decomposition SX, of R
. such that each k dimensional member of S is the union of (finitely
many) members of SX;.

(2) Corresponding to each collection SX{1, X2, ..., SX™ of sim-
plicial decompositons of R" there is some simplicial decomposition
SX. of R™ such that each member of any ngj) is a union of (nec-
essarily finitely many) members of SXj.

§4. General currents.

For our purposes a k (dimensional) crrent in R" is a continuous real
valued linear function on the real vector space of infinitely differentiable
k forms p:R® — A¥R™ having compac' support. The Euclidean current
E" assigns to each n form ¢ the number [p, (e; A - - Aey, p) dC™. With
several exceptions (e.g. Euclidean currents), the currents T we will consider
have compact support, denoted sptT. The boundary of a general k cur-
rent T is the k — 1 current 0T defined by setting 07 (w) = T(dw), e.g. in
geometrically reasonable cases, Stokes’s theorem becomes a definition. For
proper smooth mappings f: R" — R the image current f;T is defined by
setting (fyT)(3) = T(f*); this implies, in particular, that fy 08 = 8o fy
since flod=do f!.

Integration of 'differential forms over Lipschitz singular chains (in the
sense of algebraic topology) enables cne to regard such chains as currents;
one obtains the same current if a chain is subdivided or if it is changed by
an orientation preserving domain reparametrization. The so called integral
currents I,(R™) are a strong closure (in the space of general currents) of
the currents obtained by integration over Lipschitz singular chains (see the
original definition [11, 3.7]) and, as such, have similar combinatorial and

homological properties.

§5. Oriented simplexes and polyhedral chains.

A 0 current T in R™ is called an oriented 0 simplez provided T = [p] for
some point p in R"; this means T(¢) = [p](¢) = ¢(p) for each smooth func-
tion ¢ (with compact support). A k current T (k"> 0) is called an oriented
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k simplez provided there is a k simplex A having vertices po, p1, ... . Pk
such that

T = [po, 1, --- , Px]] = t(A, 1, £).

This notation means that, for each smooth differential & form ¢ having
compact support,

T(¢) = [po, P1s ---» Pe)(@) = (A, 1, &) (p) = /GA (&(z), p(x)) dHFz;

here ¢ is the unit simple k vector valued orientation function on A which
assigns to each point z in A the k vector £(z) = 1/|n| where n = (p1 —
po)A(p2—po)A ... A(px —po). If A(1), ..., A(M) are distinct members
of some SX with [ J; A(7) = A then clearly

(A, 1, €)(p) = Zt (), 1, £)(#),

i.e. as currents oriented simplexes are identified with the sum of subdivi-
sions. The abelian group generated by all oriented & simplexes within the
vector space of general k currents is called the group of integral polyhedral
k chains in R™ and is here denoted IP (R™). If T = [[po, p1s --- , Pk] =
t(A, 1, €) as above, then our notational conventions are illustrated by the
requirements that

3T = 3[po, 1, - -vo Pkl = t(A 3,¢)
and
—7T:_7|Ip07 t'n~--7Pk]'=7(IP11 Po. P2, --- vpkﬂzt(A7 77 _é)

The middle entries in the right most expressions above, e.g. 3 and 7, are
always positive since they represent a surface density. General rectifiable
k currents are of the form T = t(S, 6, £) which means

7o) = | _(E(o). olo) Bz drt

for each ¢; here S is a k rectifiable subset of R" oriented by € and having
integer valued density function 8. The mass of T is the number

M(T) = sup {T(¢): lell < 1} = /S 6 dH*.
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It turns out that the integral currents mentioned above are precisely those
rectifiable currents whose current boundaries are also rectifiable.
According to Stokes’s theorem

k
a[[POa P1y -+, PkB = Z(_I)JHPO, vee sy Pi=1s Pj+1y v v oy kal

j—0
for each oriented k simplex [po, p1, ... , px]. This current boundary opera-
tor is a homomorphism 9: IP(R") — IP;_;(R") (k > 0). The collection
of polyhedral chains of all dimensions forms a chain complex in the obvious
way. It is useful to extend this chain complex by adding a homomorphism

o: IPQ(R") — Z, OT = T(l), eg a (Z Z.'[p,'ll) = Z Z;.

i 1

It follows readily from Proposition 3 that for each fixed integral polyhe-
dral k chain T in IP(R") there exists a simplicial decomposition SX, =
U4 SXq of R™ such that

T= Zt(m(:’), 6(i), £(i))  (some N, Ax(i), 6(i), £(i))

=1
where Ag(1), ..., Ax(N) are distinct members of SX;. If k¥ > 1 we can
then write

. ;
oT = t(Ak-1(j), o(§). n(§))  (some M, Ax_1(s), o(3), n(3))
i=1 ,
where Ag_1(1), ..., Ag_1(M) are distinct members of SX;_;.

§6. The cone over a polyhedral chain.

HT=3,zlpo(2), ..., pe(2)] is an integral polyhedral chain in IPx(R")
(k<n—1)andqis a point in R", then the core over T with vertez ¢ by
definition equals

[dxT =3 zila, (i), - » Pu(D)] € TPy4a(R7)

and a short calculation shows

—T- [g]x0T ifk>1
a[[q]]»«T{ =T —(8T)q] ifk=0.

Hence T = 0Q for some @ if and only if 8T =0.
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§7. Mapping polyhedral chains by piecewise affine mappings.

Let T be an oriented k simplex [py, ..., px] in IPx(R"™), and suppose
f:R"™ = RY is affine on sptT. Then

AT = fillpo, -, o) = [f(po), - -+ » F(pe)] € IPL(RY);

equivalently

£iT =Tyo(1rn v f), T = My[(po, f(po)), - -, (Pk, f(Px))]-

Similarly, fy(zT) = zfyT for each integer z. It is immediate that f;oT =
OfsT. If f is piecewise affine and T is a polyhedral k chain then, in accor-
dance with Proposition 3 and our remark in 4, there will exist a simplicial
decomposition SX, of R" such that f is affine on each simplex of SX, and

M p
T =) t(A(), 6(i), £(3)) (some M, A(i), 8(i), £(3))

=1

where A(1), ..., A(M) are distinct members of SX;. We then set

M
KT = fit(AG), 6), £G6)).

=1
With this definition it is straightforward to check that
fi:IP(R") — IP,(RY)

is a well defined chain mapping of degree 0, e.g. fy is a dimension preserving
homomorphism with fyo00 = 8o fy whose definition is independent (on the
current level) of the particular choice of SX,.

§8. Zero chains and piecewise affine multi-functions.

Whenever T € IPo(R™) with 0T = 0 there will exist a nonnegative
integer M and (not necessarily distinct) points py, ..., Pm, 1, --- > M €
R" such that T = }:gll[qg]] - Zﬁlﬂp,]] For such T we define

M
G(T) = inf {Z |¢i — Po(syl: o is a permutation of {1, ... M}} y

i=1



This is equivalent to setting
G(T) = inf {M(Q): Q € IP;(R") with 0Q = T};

the optimal @ equals Ziﬁ][p,(,-), gi] for the right o. For each fixed integer
2g, there is a corresponding metric G on IPo(R") N {T:9T = 29} defined
by setting G(S, T) = G(S - T).

When we say that f is a piecewise affine multi-function we mean that,
for some positive integers n and N and some simplicial decomposition SX,
of R", f maps R" to IP;(R") and the following is true. Associated with
each n simplex A, in SX,, there is a nonnegative integer M together with
integers 21, ..., zp and affine mappings g1, ..., gy: R® — RN such that

M
flz)= Zziﬁg.'(z)ﬂ for each z € A,,.
=1

If f is such a piecewise affine multi-fiinction, then one defines the function
[lr-] < f: R® = IPo(R™ x RY) by setting

M
([r~] o< f)(2) = Zz.—[[(z,g.-(z))]] =[] x f(z)

for each z in A,, etc. If f is a piecewise affine multi-function then it is
straightforward to check the existence of some integer z¢ such that dof(z) =
2z for each z € R™; furthermore, f is G continuous.

As an example, the function f: R — IPg(R),

[z] = [-=] ifz>0

f(x):{o ifz <0

is a piecewise affine multi-function.

In view of Proposition 3, the piecewise affine multi-functions from R" to
IPo(RY) themselves form an abelian group based on the addition within
IPo(RY).

§9. Local representation of multi-functions.

The analysis of piecewise affine multi-functions and multi-functions mod v
is facilitated by the following proposition.
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PROPOSITION. Suppose A is a nondegenerate k simplex in R™ (k > 1) and
z1y ..., zp are integers and ¢y, ..., gy:R" — RV are affine functions
such that

M
Y alg@)] =0

IM
resp. Z:,-[[g,(r)]] € vIPo(R") for some v € {2, 3,4, ...}
=1

for each r € A. Then there is a partitioning of {1, ..., M} into nonempty

subsets Wy, ..., Wy such that, for eacha =1, ..., K,
(1) (¢:|A) = (9;1A) whenever i, j € W,
(2) E,ewu z;=0 {resp. Exewa z; € VZ]_

910. Mapping polyhedral chains by piecewise affine multi-functions.

Suppose f:R™ — IPg(RY) is a piecewise affine multi-function and T is
an integral polyhedral £ chain in R”. In accordance with Proposition 3 we
can find some simplicial decomposition SX, of R" with respect to which
the following is true.

(1) T = Z:‘i] t(A(2), 6(z), £(2)) for some M, A(7), 6(2), and (i) where
A(l), ..., A(M) are distinct members of SXj.

(2) Foreachz =1, ... , M and each z € A(7),

J(#)
fx) =" 23, DG, i) )]
j=1
for some nonnegative integers J(1), ..., J(M), some integers z(z, j), and
some affine functions f(i, j):R™ — RV,
We then set
M J(1)
AT =33 26, ) f (i 1)st(AG), B(i), £(1)) € TP(RY).
=1 ;=1

The obvious extension of this definition defines
([1r=] < ), E" € IP, toc(R" x RY)

and also
fHE" = g0 ([lrn] > f),E" € IP,(R")

in case {r: f(z) # 0} is bounded (such boundedness implies, in particular,

that do f = 0).
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§11. Multi-functions induce chain mappings.

One of the basic properties of multi-functions is the following.

THEOREM. Suppose f:R"™ — IPy(R") is a piecewise affine multi-function.
Then the induced mapping of polyhedral chains

fi:IP.(R™) — IP,(RY)

is a chain mapping of degree zero, e.g. fy is a dimension preserving homo-

morphism with 8o fy = fyo0.

PROOF: For example, use Proposition 3 and the factorization fy = Iy o

(ﬂln"]] > f)g

§12. Slicing an integral polyhedral chain by an othogonal projec-

tion.
Suppose (20, Y0), --- » (Tn,Yn) € R" x RV are the vertices of an n sim-
plex A* in R® x R" and zy, ..., z, are vertices of an n simplex A in R".

Under these conditions there is a unique affine function f: R™ — R" such
that f(z;) = y; for each i. By the slice of T = [(z0, Y0),--- » (Tn, Yn)] =
t(A*, 1, £) by T at £ € R® ~ A we mean the integral zero chain (T, Z, x)
whose value at z € A ~ A equals

sign({(z, f(z))ee1 A---Aen)-[(z, f(2))]

and whose value at £ € R" ~ A equals 0. We do not attempt to define
(T, £, z) for z € DA (Federer’s treatment of slicing [10, 4.3] does define
(T, L, z) as an appropriate real zero chain). Similarly we define

(zT, B, 2) =2z(T; %, z) for each integer z.

Now suppose A*(1),..., A*(M) are n simplexes in R" x R" whose
orthogonal projections A(z) = £[A*(i)] (: =1, ..., M) are n simplexes in
R"™ and that '

M
S =D t(A*(d), 8(i), £(i)) € IP,(R" x RN)  (some M, (i), £(1)).

=1
By the slice of S by & at z € R" ~ U,M=1 OA(1) we mean the integral zero

chain

M
(5,52 =% <t(A"(a’), 8(:), £()), T, r>,

=1



