: Lecture Notes in

Computer Science 760

Stefano Ceri Katsumi Tanaka
Shalom Tsur (Eds.)

Deductive and
Object-Oriented Databases

Third International Conference, DOOD ’93
Phoenix, Arizona, USA, December 1993
Proceedings

D33P

, Springer-Verlag

Stefano Ceri Katsumi Tanaka
Shalom Tsur (Eds.)

Deductive and
Object-Oriented Databases

Third International Conference, DOOD ’93
Phoenix, Arizona, USA, December 6-8, 1993
Proceedings

3>

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos Juris Hartmanis

Universitit Karlsruhe Cornell University

Postfach 69 80 Department of Computer Science
Vincenz-Priessnitz-Strafle 1 4130 Upson Hall

D-76131 Karlsruhe, Germany Ithaca, NY 14853, USA

Volume Editors

Stefano Ceri
Politecnico di Milano, Dipartimento di Elettronica
Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy

Katsumi Tanaka
Kobe University, Department of Computer and Systems Engineering
Rokkodai, Nada, Kobe 657, Japan

Shalom Tsur

The University of Texas, System Ctr. for High Performance Computing
Balcones Research Center

10100 N. Burnett Road, Austin, TX 78758-4497, USA

CR Subject Classification (1991): H.2.3, D.1.5-6, 1.2.4, F.4.1

ISBN 3-540-57530-8 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57530-8 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright

Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

Preface

The Third International Conference on Deductive and Object-Oriented
Databases is a continuation of the two previcus conferences in this—area:-Its
centrattemet—is the continuing belief that the object-oriented and deductive
paradigms for the modeling, organization, and processing of data complement
each other rather than competing, and that the solution of problems involving
massive volumes of complex data can best be attempted by utilizing the best of
both approaches in an integrated fashion.

Central questions in this area are therefore: “How do we design a tool that
presents the best of the object-oriented and declarative ideas, blended into one
seamless form? How can the users of this tool express their problems in a com-
bination of declarative and procedural features as their needs dictate it?” The
search for answers to these issues forms a continuing quest and we have at-
tempted to include papers in this volume that contribute towards this goal.

This volume contains twenty-nine papers. Three invited papers (David Maier,
Kotagiri Ramamohanarao, Rainer Manthey) well represent the current efforts
towards establishing the technology of deductive and object-oriented databases
though concrete prototyping and product-oriented project experiences: Proxies,
Aditi, and IDEA.

Twenty-six regular papers were selected out of a total of seventy submissions.
Eleven of them were selected by the European Program Committee after a Pro-
gram Committee meeting held in Milan on June 30; ten were selected by the
American Program Committee; and five were selected by the Far East Program
Committee. The outcome of the Far East and American Committee was solely
based on the referee reports received for each paper and the discussions among
the members of the committees. As a noteworthy feature it should be mentioned
that the global evolution of electronic mail made it possible to conclude the dis-
cussions among the different chairs without ever having to physically gather at
one place.

The editors wish to thank all of those who committed their time and efforts
towards the success of this conference, either by submitting papers and/or by
reviewing them.

December 1993 Stefano Ceri
Katsumi Tanaka

Shalom Tsur

Vi

Message of the General Conference Chairperson

It gives me great pleasure to welcome the Third International Conference on
Deductive and Object-Oriented Databases (DOOD93) to the Valley of the Sun
in Scottsdale, Arizona. This is the first time the DOOD conference has been
held in the Americas. The notable success of the first two conferences in Kyoto,
Japan, and Munich, Germany, established a challenging benchmark for us to
meet. Judging from the quality of the papers that were accepted, I feel confident
that this tradition of success is being continued. The original goal of the DOOD
conference was to bring together researchers and practitioners who are dealing
with two of the most promising areas of database research, deductive logic and
object-orientation. This goal is still valid, especially as it appears that there will
be industrial DOOD systems emerging in the near future.

The high quality of the papers presented at the conference is a direct result
of the hard work and diligence of the three program committees and external
reviewers under the supervision and guidance of the Program Chairs: Prof. Ste-
fano Ceri, Prof. Katsumi Tanaka and Dr. Shalom Tsur. I would like to express
my sincere thanks for their efforts in selecting twenty-six high quality papers and
to the authors. I also want to express my thanks to the three invited speakers,
Prof. David Maier, Prof. Kotagiri Ramamohanarao and Prof. Rainer Manthey.
In recognition of the movement of DOOD out of the research laboratory and
into industrial environments, the conference is also featuring two panels, one de-
voted to DOOD research directions and the other exploring potential application
domains for DOOD.

An interesting innovation for this conference is that several papers have been
nominated for inclusion in a special issue of the Journal of Intelligent Informa-
tion Systems, dedicated to DOOD topics, that is to appear in 1994.

The conference also includes several special activities for spouses and atten-
dees that are intended to allow participants to gain a deeper appreciation of the
Arizona locale. This includes an all-day tour to the Grand Canyon, immediately
following the conference.

An undertaking of this magnitude cannot succeed without the assistance of
numerous dedicated people who give unselfishly of their time and efforts. I would
especially like to thank the chair of the organizing committee, Dr. Forouzan
Golshani, for his extensive contributions. Thanks also are due to Prof. Robert
Meitz, the treasurer, Ms. Robin Fulford, chair of publications and publicity and
to Mr. Ted Karren, chair of registration.

I would like to express my gratitude to the chair of the DOOD Steering
Committee, Dr. Jean-Marie Nicolas, and to each of the Steering Committee
members. Finally, I would like to thank Prof. Jack Minker, Steering Committee
Chair Emeritus, who remains one of the most important driving forces behind
the success of this conference.

December 1993 Oris Friesen

Vil

General Chairperson
Oris Friesen (Bull HN)

Steering Committee Chairperson
Jean-Marie Nicolas (Bull SA)

Steering Committee Chairperson Emeritus
Jack Minker (University of Maryland)

Program Committee Chairpersons
America
Shalom Tsur (University of Texas)

Europe
Stefano Ceri (Politecnico di Milano)

Far East
Katsumi Tanaka (Kobe University)

Far East Coordinator
Shojiro Nishio (Osaka University)

Organizing Committee Chairperson
Forouzan Golshani (Arizona State University)

Treasurer
Robert Meitz (Arizona State University)

Publicity and Publications Chairperson
Robin Fulford (Bull HN)

Registration Chairperson
Ted Karren (Bull HN)

Sponsors:
— Arizona State University/Intelligent Information Systems Laboratory

— Bull Worldwide Information Systems
— American Express

Supporting Organizations:
— European Computer-Industry Research Centre (ECRC)
— Advanced Software Technology and Mechatronics Research Institute of
Kyoto (ASTEM RI/Kyoto)

Cooperating Organizations:
— American Association for Artificial Intelligence (AAAI)

— Commission of the European Communities, DGXIII

Vil

Program Committee Members

America Europe Far East
Anthony Bonner Serge Abiteboul Qiming Chen
(Univ. of Toronto) (INRIA, Paris) (Tsing-Hua Univ.)
Suzanne Dietrich Peter Apers Kazuhiko Kato
(Arizona State Univ.) (Univ. of Twente) (Univ. of Tokyo)
Sumit Ganguly Elisa Bertino Tok-Wang Ling
(Rutgers Univ.) (Univ. of Genova) (Natl. Univ. of Singapore)
Narain Gehani Francois Bry Hongjun Lu
(ATT Bell Laboratories) (ECRC, Munich) (Natl. Univ. of Singapore)
Michael Kifer Georg Gottlob Akifumi Makinouchi
(SUNY Stony Brook) (Tech. Univ. Wien) (Kyushu Univ.)
Jean-Louis Lassez Peter Gray Nobuyoshi Miyazaki
(IBM TJWatson Res.Ctr.) (Univ. of Aberdeen) (Oki)
Jack Orenstein Klaus Dittrich Shojiro Nishio
(Object Design Inc.) (Univ. of Zurich) (Osaka Univ.)
Raghu Ramakrishnan Giorgio Ghelli Atsushi Ohori
(Univ. of Wisconsin) (Univ. of Pisa) (Oki)
Ken Ross Rainer Manthey Maria Orlowska
(Columbia Univ.) (Univ. of Bonn) (The Univ. of Queensland)
Jehoshua Sagiv Jan Paredaens Ron Sacks-Davis
(Hebrew Univ.) (Univ. of Antwerp/UIA) (RMIT, Univ. Melbourne)
Olivia Sheng Joachim Schmidt Toshihisa Takagi
(Univ. of Arizona) (Hamburg Univ.) (Univ. of Tokyo)
Oded Shmueli Marc Scholl Kyu-Young Whang
(Technion, Haifa) (Univ. of Ulm) (KAIST)
Ouri Wolfson Letizia Tanca Kazumasa Yokota
(Univ. of Illinios, Chicago) (Politecnico di Milano) (ICOT)
Clement Yu Patrick Valduriez Masatoshi Yoshikawa
(Univ. of Illinios, Chicago) (INRIA, Paris) (Kyoto Sangyo Univ.)
Carlo Zaniolo Fernando Velez
(UCLA) (O2 Technology)

Laurent Vieille

(Bull SA)

Roberto Zicari
(J.-W. Goethe Univ.)

Contents

Object-Oriented Database Technology

Treating Programs as Objects: The Computational Proxy Experience

(INVITED PAPER) ...ttt ittt e e e

D. Maier, J.B. Cushing

Language Semantics I

Foundations of Aggregation in Deductive Databases

A.V. Gelder

The Differential Fixpoint Operator with Subsumption

G. Kostler, W. Kieflling, H. Thone, U. Gintzer

Datalog with Non-Deterministic Choice Computes NDB-PTIME

L. Corciulo, F. Giannotti, D. Pedreschi

Applications and Usage of Logic

A Deductive and Object-Oriented Approach to a

Complex Scheduling Problem

Y. Caseau, P-Y. Guillo, E. Levenez

On the Logical Foundations of Schema Integration and

Evolution in Heterogeneous Database Systems

L.V.S. Lakshmanan, F. Sadri, I.N. Subramanian

Explaining Program Execution in Deductive Systems

T. Arora, R. Ramakrishnan, W.G. Roth, P. Seshadri, D. Srivastava

Query Optimization

A Logic for Rule-Based Query Optimization in

Graph-Based Data Modelso,

N.Coburn, G.E. Weddell

Specifying Rule-Based Query Optimizers in a Reflective Framework

L.Fegaras, D. Maier, T. Sheard

Semantic Query Optimization in Deductive Object-Oriented Databases ...

J.P. Yoon, L. Kerschberg

Panel 1

Research in Deductive and Object-Oriented Databases 183
R. Ramakrishnan (MODERATOR)

Deductive Logic Database Technology

An Implementation Overview of the Aditi
Deductive Database System (INVITED PAPER)cuvue... 184
K. Ramamohanarao

Language Semantics II

Negation and Aggregates in Recursive Rules: The LDL++ Approach 204
C. Zaniolo, N. Arni, K. Ong

ISALOG —: A Deductive Language with Negation for
Complex-Object Databases with Hierarchies 222
P. Atzeni, L. Cabibbo, G. Mecca

On Efficient Reasoning with Implication Constraints 236
X. Zhang, Z.M. Ozsoyoglu
Query Processing

Bottom-Up Query Evaluation with Partially Ordered Defaults 253
S. Brass, U.W. Lipeck

An Extension of Path Expressions to Simplify Navigation in
Object-Oriented QUETIESouvniniiiiiiiiiiii it 267
J. Van den Bussche and G. Vossen

QUETY CISSES .. ettt ittt it a e e et 283
M. Staudt, M. Jarke, M.A. Jeusfeld, H. W. Nissen

Updates

Database Updating Revisitedccoiiiiiiiiiiiiiiiiiiiiiiiian, 296
D. Laurent, V. Phan Luong, N. Spyratos

Super-Key Classes for Updating Materialized Derived Classes
in Object BaSES < uswsmsens wsssesvme ses ssesms sms s os s ol i 5 00 s 519 3 078 5 w10 598 4.0 310
S. Konomi, T. Furukawa, Y. Kambayashi

Xl

Panel 2

Applications of Deductive and Object-Oriented Databases 327
S.W. Dietrich (MODERATOR)

Deductive and Object-Oriented Database Technology

Beyond Data Dictionaries: Towards a Reflective Architecture
of Intelligent Database Systems (INVITED PAPER) 328
R. Manthey

Extensions to Object-Orientation

A Deductive and Typed Object-Oriented Language 340
R. Bal, H. Balsters

Noodle: A Language for Declarative Querying in an
Object-Oriented Databasecoiiiiiiiiiiiiiiiiiiiii i, 360
LS. Mumick, K.A. Ross

Tracking Causal Dependencies in an Active Object-Oriented Database ... 379
D.Mattoz, K. Smith, S.C.Y. Lu
Object-Oriented Concepts

Automatic Class and Method Generation for
Object-Oriented Databasesc.ccooiiiiiiiiiiiiiiiiiiii i 395
R. Elmasri, S. James, V. Kouramagian

Modeling Multilevel Entities Using Single Level Objects 415
E.Bertino, S. Jajodia

A Model Using Classes as a Basic Organization Tool 429
T.W. Koh, B.C. Ooi, Y.S. Ho
Data and Knowledge Modelling Concepts

Knowledge Base Revision Using Circumscription 444
L.Y. Yuan, J-H. You

Versioning of Objects in Deductive Databases 459
F.N. Kesim, M. Sergot

A Model for Sets and Multiple Inheritance in
Deductive Object-Oriented Systems e 473
G. Dobbie, R. Topor

Treating Programs as Objects: The
Computational Proxy Experience

David Maier and Judith B. Cushing

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
20000 N.W. Walker Road P.O. Box 91000
Portland, OR 97291-1000

Abstract. Migrating data to a new database model presents problems if
there are existing application programs that must continue to access the
data, bu that cannot be converted immediately. If the target database is
object-oriented, such a legacy program can be encapsulated as an object
or a message. We argue that some applications will benefit from further
“reification” of execution instances as database objects. We introduce
a “computational proxy” mechanism and our prototype implementation
of it for computational chemistry codes. We conclude with a discussion
of where declarative capabilities would have been a useful adjunct to
object-oriented database features.

1 Introduction

Object-oriented databases provide type definition facilities that cope well with
complex structures that arise in advanced applications, such as scientific com-
puting. While transitioning datasets to an object-oriented environment can be
non-trivial, providing for existing application programs to access the data in its
new form can be a greater challenge. It is not always possible or feasible to con-
vert those programs immediately to interface to the database directly, for several
reasons:

1. Programming resources are not available to make the modifications.

2. There is not an appropriate application programming interface for the lan-
guage in which the application is coded.

3. The source code of the program is not maintained or understood locally.

4. There are users of the program who still need to access existing datasets in
the old format.

Thus, there is often a need to continue running an application program in its
existing form, while providing a bridge to the data in its new form. We note that
object-oriented databases are mostly introduced to supplant file-based data man-
agement, rather than replace an existing database management system. Hence,
we direct our attention to existing applications with file-based data access.
One approach is simply to write a database application that accesses the
appropriate data objects and creates an input file for the legacy program, then

2

captures the output file and makes updates to the database. While this loose
coupling of the program and the data may often be appropriate, for the domain
of computational science where we are working, we desire a tighter binding. Runs
of the program are tantamount to “experiments”, and we want to record that the
run took place, the results, and information about the run—rate of convergence,
resource usage, exceptional conditions. Thus, we want the database to have ready
access to information about program executions. Other application areas also
exhibit this need to record program execution, such as the run of a design-rule.
checker against a circuit layout or a compilation in a CASE tool.

A more integrated approach—proposed more than once in the literature—is
to leave the application program as is, and encapsulate it as a database object or
a message of a database class. In the former case, the application is invoked when
a message with the input data as an argument is sent to its wrapper object. In the
latter, it runs when its corresponding message is sent to the object representing
its input. Either approach assumes some way of calling out to the application
or linking it in to the database executable, as well as constructing conversion
routines between data objects and files. While “wrapping” a legacy application
may work in some cases, we believe it will often be too limited an approach.

Capturing an external application program as a single object or message
assumes a very input-output model, one where all the inputs are passed in as a
unit, the program executes and the outputs are received as a unit. We believe
this simple model can be inconvenient or inappropriate for many applications.
We may want to separate supplying inputs from scheduling the execution of the
program. In particular, when a computation is long, we might not want to wait
while it executes. We would rather that the program run asynchronously from
the database session, so we are free to do other things while it executes. Instead
of treating the program execution as an atomic action, we may want to monitor
its progress, in order to stop it, checkpoint it or observe intermediate results.
Further, a single object or messages gives little help for organizing and gathering
inputs or for structuring the translation process.

In this paper we offer a refinement of the naive wrapper approach that deals
better with existing programs having complex inputs and long execution times.
In addition to modeling the legacy program in the database, we also represent
an individual invocation of the program as an object. Having such computation
objects, or Computational Prozies as we term them, provides greater control
over input assembly, scheduling invocation, execution monitoring and output
processing. Furthermore, computational proxies offer a means to provide uniform
interfaces to collections of programs whose inputs are semantically similar but
syntactically diverse. The proxy mechanism is also a basis for constructing and
managing suites and sequences of runs.

We are not alone in applying object-oriented databases to supporting scien-
tific computing. A recent NSF report [CCT93] shows object-oriented approaches
used for protein-structure data, medical research, macromolecules, global change
data and scientific visualization. In particular, the MOOSE system [IL92] has
dealt with modeling the complex inputs to a scientific simulation program.

Our main motivation was masking syntactic complexity, but proxies also
serve to mask some details of processor heterogeneity and distribution, in the
case where the underlying application runs in several dissimilar environments.
From this vantage point, our work resembles other efforts in software systems
to promote program interoperability, such as software “packaging” [CP91], mid-
dleware (see for example Bernstein [Be93]) and distributed object management
systems [NWM93].

We report here on our use of computational proxies in the domain of compu-
tational chemistry, and then try to abstract lessons that can be applied in other
domains, as well as indicating where more declarative formalisms would be a
useful adjunct to object databases in support of our work.

2 Experience with Computational Proxies

The Computational Chemistry Database Project (CCDB), a joint effort of the
Scientific Database Group at the Oregon Graduate Institute and the Molecu-
lar Science Research Center at Battelle’s Pacific Northwest Laboratory, began
as an exploration of the hypothesis that object-oriented databases could sim-
plify the complex computing environment in which computational chemists find
themselves. The resulting database infrastructure is predicated on providing not
only relatively well understood data services but also extending object-oriented
database functionality to provide computation services.

Ab initio molecular orbital methods apply quantum-mechanical techniques
to molecular structure and energetics, solving the Schodinger equation to various
levels of approximation. The solutions produce a wave function and associated
electron density from which can be computed any observable molecular, property
such as vibrational frequencies or electrostatic moments (dipoles, quadrupoles,
etc.). Important inputs to these applications include an initial guess of molecular
structure and a basis set of functions which together provide a starting point
for iterating the Schrodinger equation. Other input parameters can be specified,
depending on the particular application; these include the level of approximation
to which to take the calculation, some maximum number of iterations, and the
choice of a particular algorithm. The major outputs of the application include
an optimized molecular structure, an energy value corresponding to that struc-
ture, and the corresponding wave function (also called electron density function
or molecular orbitals). From the wave function are calculated the outputs of
primary interest to non-theorists, for example, chemical properties such as elec-
trostatic moments or hydrophobicity. In summary, these applications compute
chemical properties directly from first principles using equations from quantum
chemistry. Figure 1 gives an overview of inputs and outputs for computational
chemistry codes.

A typical computing environment for a computational chemist consists of
one or more of the application packages in fairly common use, such as Gaussian,
GAMESS, MELDFX and HONDO. The application programs are very (100,000
to 300,00 lines of code), maintained remotely, computationally intensive, and

Quantum
Chemistry
Application

Outputs

Chemical
Properties

Fig. 1. Inputs and outputs for computational chemistry codes.

semantically similar but syntactically idiosyncratic. They require complex input
files, create intermediate files of a gigabyte or more, and run on a variety of
platforms from workstations to supercomputers. Output files are typically no
larger than a few megabytes, but can be difficult to interpret. In the course of a
single investigation, a chemist may generate hundreds of input and output files.

The considerable semantic complexity of the applications lies primarily in
selecting input parameters appropriate for the subject molecule and desired re-
sults. A poor choice of input parameters will, at best, result in days or weeks of
lost CPU hours. At worst, it can yield a plausible but incorrect result. The syn-
tactic complexity lies in the relatively arcane formats of input and output files.
Indeed, inputs or outputs of one application cannot easily be used as the input
to another; considerable data transformation is required. Reformatting outputs
of one program to use as inputs to another is a major problem for many chemists
using these applications.

While much of the semantics of one application are transferable to another,
the syntaz is not. These applications were developed independently, over a long
period of time; with few exceptions,! they are syntactically quite different. This
syntactic complezity makes sharing of data between applications difficult. Fig-
ure 2 illustrates some of the conversions needed to run the same molecule through
different application packages and compare outputs.

! GAMESS and HONDO are similar.

[6))

Compare
Property

Fig. 2. Syntactical Complexity of Computational Chemistry Applications.

Our initial objective was to create a database of inputs and outputs of pre-
vious experiments to aid in selecting input parameters. In addition, the naming
and managing hundreds of input and output files spread over multiple machines
during the course of an investigation is too great a data management burden
on the scientist. Continuing to use flat files is not a viable option for effectively
sharing experimental results.

As a first step towards constructing the database, we designed a conceptual
model covering the programs’ major inputs and outputs. We chose and object-
oriented database to implement that model, finding its language 'and model-
ing features (particularly encapsulation and direct representation of complex
structures) to fit our requirements. An obvious additional advantage was that
we could map conceptual-level classes, operations and hierarchies directly into
counterparts in the database’s data definition language (DDL) with little encod-
ing. Figure 5 is a top-level view of the logical database design. This model was
implemented in the ObjectStore object-oriented database management system
[CMR+92b).

Experience using standalone programs to load the prototype database with
experimental inputs and outputs, however, impelled us to seriously consider
how to integrate the applications with the database and make the database the
focal point for running computational experiments. Leaving the loading as a

task separate separate from running an application would add to the chemist’s
overhead in running computational experiments and would inevitably prove error
prone. We also wanted a more uniform interface to a diverse computational
environment, and having the database separate from the applications did little
to simplify the computing environment.

An obvious way to interface the applications to the database would have been
to modify the programs to access and write to the database directly. The com-
putational chemistry programs in question are simply too large, complex, and
too often revised by others to make this approach feasible. A second alternative
was to provide a “wrapper” for the computational applications, sending inputs
to the wrapper and having it invoke application. However, this alternative is too
simplistic; for example, it does not easily allow for automatically placing results
of the computation back into the database, nor does it simplify monitoring of
ongoing experiments.

Because the textual interface to these programs is easier to read and more
stable than the application programs themselves, we decided to use the textual
inputs and outputs as a basis for the interface, and to define an intermedi-
ate structure that would represent the computation in the database and help
automate the control of ongoing experiments. We dubbed this mechanism a
computational prozy. Computational proxies “stand-in”, within the database,
for computational experiments in preparation, currently in process, or recently
completed.

Messages associated with the proxy class provide an interface to the com-
putational programs used to run those experiments. The proxy encapsulates
syntactic differences among semantically related applications, providing trans-
formations of database items to application inputs and of application output
into the database. Figure 3 shows this conceptual encapsulation of computa-
tional chemistry applications. When the user schedules a run, a proxy automati-
cally transforms experimental attributes held in the database into textual inputs
appropriate for a given application program. The inputs are shipped to the pro-
cessor where the application is to run, and the application is invoked remotely on
them. During the run, the user can interact with the proxy to halt and restart
computation, view intermediate results (such as error terms) and monitor re-
source usages. Once the run has terminated, the proxy parses the outputs and
places experimental results into the database in a form comparable to that of
data for other applications. Thus, a database of experiment inputs and outputs
is an immediate byproduct of launching experiments via the proxy mechanism.

~ Our first realization of the proxy mechanism consists of hand-coded programs
that generated input files and parsed output files specifically for a given appli-
cation. However, we feel that the user community should be able to register an
application with the database descriptively by creating new objects, rather than
by writing code specific to each application. We have thus focused our recent
efforts on the ability to specify proxies declaratively. We call these specifications
templates. The application descriptor, or template, defines the mapping between
the domain-specific database and program-specific inputs and outputs.

Orbital

H’O

GAMESS
nput & Output|
Templates

Inputs -- Outputs
GAMESS Format

Fig. 3. Hiding syntactic complexity of computational codes.

We extended our logical data model to incorporate computational proxies. A
computational proxy represents a process that is about to run, is running, or has
run an experiment. A proxy runs on a particular compuler, i.e., processor, that
is connected to the same network services to which the proxy itself is connected.
Any particular computer is an instance of some generic computer platform, e.g.,
the processor coho is a Sun4 computer platform. If a proxy object runs on a
particular processor, we say that the ezperiment represented by that prozy runs
on that processor. In order for an experiment to run on a processor of a particular
type of computer platform, the application it uses must be both available for
the corresponding platform and installed on the particular processor. Figure 4
illustrates these conceptual relationships.

To date, we have implemented a computational proxy mechanism that in-
terfaces directly to the GAMESS package. This prototype currently runs under
C++ and ObjectStore on distributed Sun SparcStation2 platforms. We are cur-
rently working on the database structures that will allow the non-programmatic
specifications of proxies for new applications [C93].

