WHWJJUW'IIIIIWJNIUHHWIIIIHIWUU)U Tﬂllﬂl”lﬂllﬂJiiﬂ"lWHW ra

FORTRAN IV
PROGRAMMING 7%

Rinehart Press / Holt, Rinehart and Winston

San Francisco

Library of Congress Cataloging in Publication Data

Price, Wilson T
Elements of Fortran IV programming.

Published in 1969 under title: Elements of basic
Fortran [V programming, as implemented on the IBM
1130/1800 computers.

Includes bibliographical references and index.

1. FORTRAN (Computer program language) I. Title.
QA76.73.F25P74 1975 001.67425 74-22150
ISBN 0-03-089502-2

Elements of FORTRAN IV Programming, Second Edition, by Wilson T. Price

© 1975, 1969 BY RINEHART PRESS
5643 PARADISE DRIVE
CORTE MADERA, CALIF. 94925

A DIVISION OF HOLT, RINEHART AND WINSTON. INC.

ALL RIGHTS RESERVED.

PRINTED IN THE UNITED STATES OF AMERICA

89 140 9876543

ELEMENTS OF

Wilson T. Price

MERRIT COLLEGE,
OAKLAND, CALIFORNIA

ELEMENTS OF FORTRAN IV PROGRAMMING

Preface

As was the first, this second edition has been written specifically
for the student with average ability who desires or requires a basic working
knowledge of Fortran. Perhaps the most significant aspect in which it
differs from many of the excellent Fortran books now available is its
slow and deliberate pace and its sequencing of topics to allow virtually
immediate access to the computer. This is accomplished through use of a
basic integer subset of the language in Chapter 1. The topics covered,
which amply provide the beginner sufficient background to write simple
programs, include (1) simple expressions and the arithmetic statement,
(2) the READ and WRITE statements, (3) the FORMAT statement using
the I and X data descriptors, and (4) the GO TO statement. Thus after
only a few lessons the student can begin writing simple yet meaningful
programs and the computer then becomes, in a sense, a teaching machine
from the very beginning. This approach is in contrast to that of many books
which discuss the general characteristics of computers and extensive details
of Fortran constants, variables, and expressions, the Fortran arithmetic
statement, and input/output before the first program can be run. Indeed,
it is the author’s contention that much extended discussion on computer
characteristics is lost to the average student if he has no frame of
reference. The approach used in this text provides that frame by
presenting a basic subset of the language in Chapter 1; then while the
student is writing and running programs he can be studying more advanced
topics such as the |F statement and the nature of the compiling process.
Taken in this manner, the latter assumes much more significance.

The attempt in this revision was to retain the strong features of
the first edition and to expand and upgrade those areas which were
generally considered weak. The primary changes include (1) utilization of
the American National Standard (ANS) Fortran as the basic standard
for the book, (2) use of an integer subset in Chapter 1, (3) inclusion
of a chapter on alphabetic data manipulation (Chapter 8), (4) the
generalization of disk and tape I/O to include both ANS sequential
processing techniques and IBM 360/370 direct-access facilities, (5) the
expansion and broadened scope of programming problems, and (6) the
inclusion of exercises with answers at the end of each chapter.

Three appendixes in this book include (1) a suggested subroutine
which can be used to terminate program processing for use in Chapter 1,
(2) a list of relevant features in ANS Fortran which are not included in
ANS Basic Fortran, and (3) a description of card coding, card fields, and
using the card punch to prepare Fortran programs.

ACKNOWILEDGEMENTS

Many of the notions and techniques used in this book have come,
either directly or indirectly, from the suggestions of colleagues, students,
and friends. In addition to the many who contributed to the first
edition, the following have contributed their expertise to this second
edition:

James L. Boettler, Talladega College

Harry Caughren, Merritt College

Amos T. Hathaway, The Citadel

Colonel Oren L. Herring, Jr., The Citadel

Claude E. LaBarre, State University of New York
Marie Palmer, Edinboro State College

Jesse K. Peckenham, Merritt College

Richard Theil

James H. Westmoreland, University of Tennessee

To these and all others who participated, I extend my sincere thanks.

Oakland, California WiLsoN T. PRICE

CONTENTS

PREFACE ix
INTRODUCTION 1 CHAPTER 4
The Modern Digital Computer 2 INPUT/OUTPUT
Computer Software 3 Review of Chapter 1 Principles 71
End-of-Data-File Techniques 74
CHAPTER 1 Real Specifications for Output 75
A SUBSET OF THE FORTRAN LANGUAGE Real Specifications for Input 79
More of the FORMAT Statement 81
A Simple Fortran Program 10 Hollerith Data 88
Constants and Variables 14 Answers to Preceding Exercises 91
Performing Calculations in Fortran 16 Programming Problems 92
Input/Output Operations 19
Format Control 21
Other Statements 24
Summarizing Basic Principles 25 CHAPTER 5
Answers to Preceding Exercises 28
Programming Problems 29 PROGRAM CONTROL
Controlled Loops 96
CHAPTER 2 Additional Fortran Statements—
EXPANDING BASIC PRINCIPLES Terminal Operations 101
Logical and Relational Concepts in Fortran 103
The Arithmetic IF Statement 35 Testing Binary Conditions 108
Advanced Techniques 39 Square Root by lterating 109
Flowcharting 42 The Computed GO TO 112
The Process of Compiling—An Analogy 45 Answers to Preceding Exercises 114
Answers to Preceding Exercises 49 Programming Problems 116
Programming Problems 50
CHAPTER 3
CHAPTER 6
PRINCIPLES OF FORTRAN COMPUTATION
DO LOOPS
Summarizing Integer Features 54
Real Data 55 The DO Statement 124
Arithmetic Expressions 58 Simple DO Loops 127
Common Mathematical Functions 65 Restrictions on the DO Statement 132
Answers To Preceding Exercises 68 Answers to Preceding Exercises 137

Programming Problems 69 Programming Problems 137

vi

CHAPTER 7 Processing Arrays 231
SUBSCRIPTED VARIABLES Summarizing the Subroutine Subprogram 232
Arithmetic Statement Functions 234
Basic Principles 142 Summarizing the Statement Function 237
Fortran Subscripting 143 Answers to Preceding Exercises 238
The DIMENSION and Type Statements 147 Programming Problems 240
Using Subscripted Variables 149
Allowable Subscript Forms 154
Indexing Input/Output Statements 157
Answers to Preceding Exercises 159 CHAPTER 11
Programming Problems 160

ADDITIONAL CONCEPTS REGARDING ARRAYS
AND SUBPROGRAMS

CHAPTER 8
MANIPULATION OF ALPHABETIC DATA The EQUIVALENCE Statement 247
The COMMON Statement 251
The DATA Statement 166 The EXTERNAL Statement 256
Input and Output 169 Using Subprograms 257
Example Programs 171 Answers to Preceding Exercises 258
Input/Output—the T Format 176
Answers to Preceding Exercises 178
Programming Problems 179
CHAPTER 12
CHAPTER 9

AUXILIARY STORAGE TECHNIQUES
TWO- AND THREE-DIMENSIONAL ARRAYS

Auxiliary Storage 261
Example of a Two-Dimensional Array 187 1/0O Statements for Auxiliary Storage 265
Processing the Array 192 Unformatted Input and Output 268
Two-Dimensional Arrays in Fortran 195 A Sequential Processing Application 269
Input and Output of Two- and Direct-Access Input’Output 272
Three-Dimensional Arrays 199 A Direct-Access Processing Application 279
Alphabetic Data Manipulation 201 Answers to Preceding Exercises 280
Contigency Tables 203
Expanding Example 9-1 207
Answers to Preceding Exercises 208
Programming Problems 210
APPENDIX 1| End of Data Program Check 282
CHAPTER 10
APPENDIX Il Comparison of ANS Fortran
FORTRAN SUBPROGRAMS and ANS Basic Fortran 283
Basic Concepts 218 APPENDIX lll The 80-Column Card and
The Function Subprogram 220 Card Punching Procedures 285
Summarizing the Function Subprogram 225

The Subroutine Subprogram 226 INDEX 297

EXAMPLE
PROGRAMS

Example Description

1-1

2-1

5-1

5-2

5-3

5-4

5-5

Calculation of area and perimeter of a rectangle using a subset of Fortran.

Calculation of the mean of a data set using the |F statement.
Using the end-of-file feature in calculating the mean of a data set.
Use of the FORMAT statement.

Use of the FORMAT statement.

Use of the FORMAT statement.

Execution of a controlled loop a predetermined number of times
(calculation of mean).

Controlling a loop through use of a trailer record (calculation of mean).

Testing binary conditions.

Square root calculation by successive iterations.

Using the computed GO TO

Basic use of the DO loop (calculation of mean).

Basic Use of the DO loop (calculation of mean).

Nested DO loops (calculation of compound interest).
Loading a data set into an array; use of subscripted variables.
Reversing the elements in an array.

Searching a data array.

Computing the subscript of a desired array element {snowfall analysis).
Loading a data set from cards into an array.

Manipulation of alphabetic data.

Printing form letters.

Printing a customer balance report.

39

74

82

83

84

97

98

108

127

127

129

145

149

151

152

156

171

173

174

vii

viii

9-2

9-3

Manipulation of a two dimensional array {(malfunctions of a mounting).

Converting from month number to month name to illustrate alphabetic
data in a two-dimensional array.

Calculation of contingency tables.

Tabulating sales information for magazine salespeople using a
two-dimensional array.

A function subprogram to search an array.

A subroutine subprogram to reverse the elements of an array.

Processing a sequential file from disk (scoring multiple-choice questions).

Random processing a direct-access file (scoring multiple-choice
questions).

192

202

203

207

223

232

270

279

Introduction

CHAPTER CONTENTS

THE MODERN DIGITAL COMPUTER

STORACE

ARITHMETIC UNIT
CONTROL UNIT
INPUT/OUTPUT
AUXIUARY STORAGE

THE COMPUTING SYSTEM

COMPUTER SOFTWARE
OPERATING SYSTEMS
MULTIPROGRAMMING AND TIME SHARING
COMPUTER LANGUAGES
FORTRAN

THE MODERN DIGITAL COMPUTER

Electronic digital computers fall into two broad categories: special
purpose and general purpose. As the name implies, special-purpose
machines are designed to perform a single type of function, such as
military aircraft fire control or process control for oil refineries. General-
purpose computers, through their versatile languages, can be used for
virtually any type of application. Although computer design will vary from
one manufacturer to another, the basic components common to most
modern general-purpose digital computers are (1) storage, (2) the arith-
metic or logic unit, (3) the control unit, (4) input/output, and (5) auxiliary
storage.

STORAGE

Computer storage, the single component that is probably most
glamorized, is often referred to as memory analogous to the human
memory. This popular representation can be misleading, because the
storage unit is better compared to a filing cabinet in which information
can be stored and retrieved in an orderly manner. For this reason, the
term storage will be used exclusively.

ARITHMETIC UNIT

It is the function of the arithmetic unit to perform basic arithmetic
and certain logical operations as required by the program. These include
the common arithmetic operations of addition, subtraction, multiplication,
and division as well as special shifting functions and Boolean operations.
To these ends the arithmetic unit includes special storage locations
commonly referred to as arithmetic registers. These together with electronic
switches and other components are analogous to the gears, wheels, and
registers of a desk calculator.

CONTROL UNIT

The task of directing operations within the computer is the function
of the automatic control unit. This portion of the computer can be
considered analogous to the combination of a traffic officer and automatic
telephone switchboard. It obtains instructions from storage, interprets
them, and makes certain that they are carried out as required. These
functions involve opening and closing appropriate circuits, starting and
stopping input/output devices, and, in general, directing flow of in-
formation in the computer.

INPUT/OUTPUT

Means for communicating with computers has always been a for-
midable problem to computer designers because all input/output devices
involve some type of mechanical linkage, and, in general, mechanical
methods are relatively slow. This has undoubtedly contributed to the many
and varied means used to get information into and out of a computer.
The most common devices for input/output of data are punched cards,
magnetic tape, punched paper tape, and the computer typewriter. Printers
capable of printing entire lines at a time are also commonly used for output.

AUKXILIARY STORAGE

In almost all computer systems, the problem of insufficient storage
for some applications is almost inevitable. Simply to obtain a computer

2

3

with a larger storage unit is not always the appropriate solution for a THE MODERN DIGITAL
number of reasons, one of which is high cost. As a result, most computers COMPUTER

are presently available with auxiliary storage devices. These are commonly

magnetic tape, disk, or drum devices and have storage capabilities many

times greater than the main storage of the computer. However, a dis-

advantage of auxiliary storage devices is their relatively slow operating

speeds. They are commonly used to store special systems programs for

achieving virtually automatic transition from one job to the next, for

storing commonly used programs, and for storing large information files.

THE COMPUTING SYSTEM

These basic components, which are common to most computers, are
generally interconnected as shown in Figure 1. Information flow is (1)

Arithmetic
and Logic
A l
Control
.
Storage Auxiliary
Storage
l———

FIGURE 1 Schematic diagram of a computer system.

from input through control to storage, (2) from storage through control
to the arithmetic section and back to storage through control, (3) from
storage through control to output, and (4) from main storage to auxiliary
storage and back to main storage.

These are the elementary concepts and components common to all
digital computers. At the present time there are electronic computers in use
with the capacity for storing only a few hundred characters of information
and with minimal input/output capabilities. On the other hand, the newest
and largest computer systems store several million pieces of information
and utilize many input/output devices, as well as extra equipment including
auxiliary storage facilities.

COMPUTER SOFTWARE
OPERATINGC SYSTEMS

Early computers required considerable attention from the operator.
That is, in running a series of jobs the operator would ready the
computer, load one job (deck of cards constituting the program of in-
structions), and start the computer executing the program. If error
conditions occurred which stopped the program, the machine would
frequently remain idle while the operator investigated the problem.
Furthermore, after the program was completed the computer would often

4
INTRODUCTION

Computer
Storage for Storage
Program Use

FIGURE 2 The supervisor in storage.

be idle during the preparation for the next job. Overall the machine
would be waiting for operator action a significant portion of the time.
With the vastly improved computing speeds and capabilities of newer
computers and the increased demand for computer use, this primitive
type of manual control became totally impractical. Special supervisory
types of programs quickly came into being for the purpose of providing
automatic or ssmiautomatic control over many of the machine functions.
These programs improved computer utilization and relieved the operator
of many mundane activities. We now know these types of systems as
operating systems. Briefly an operating system is a set of programs,
resident in the computer system, designed to maximize the amount of
work the computer system can do.

High computing speed, large storage capacities, and sophisticated
input/output capabilities are three of the many hardware features of
present-day computers. To most users, however, programming systems
or software (including diverse languages and operating systems) supplied
by the manufacturer are just as important. For, in general, these systems
relieve the user of extensive, detailed programming and operational re-
sponsibilities, allowing for much more efficient utilization of the computer.
Since the present computers were designed specifically to work with oper-
ating systems, their machine capabilities are used much more efficiently
than those of earlier computer systems.

With the extensive use of magnetic tape and especially of quick access
storage devices such as magnetic disk, the utilization of operating systems
has become commonplace. The key to an operating system is the super-
visor program (sometimes called a monitor or an executive program). The
supervisor remains in storage at all times and maintains control, directly
or indirectly, while the computer is in use (see Figure 2). In addition, an
operating system consists of other special control programs, systems service
programs, and processing programs. Through the use of system libraries,
these are integrated into the comprehensive operating system, which may
be controlled by the user through special job control commands. The
overall nature of the operating system in general and the supervisor in
particular is illustrated in the schematic representation of Figure 3.

MULTIPROCGRAMMING AND TIME SHARING

Through the use of operating systems and special hardware features
of the modern computer, the total amount of useful work performed
(throughput) has been greatly increased over earlier systems. Another
means for increasing the usage of the machine is through mulri-
programming. With the storage-resident supervisor concept, we have been
introduced to the notion of having two programs in storage at the
same time: the supervisor for overall system control and the problem
program for performing the data-processing function. In multiprogram-
ming, this concept is carried one step further by placing two or more
problem programs in storage and executing them concurrently. Although
two or more programs may reside in storage simultaneously, the com-
puter is capable of executing only one instruction at a time. Thus at any
given time only one of the programs has control of the computer and
1s executing instructions. Simultaneous execution of two programs with
one central processing unit (CPU) is impossible.

5
COMPUTER SOFTWARE

Snmple com puter

S lerary \\ fy\rmzq 1 p 7‘ 7‘L:;
5 Ll 3

Compiler |

rack
|
| |
| ‘
(/U |
; v)
Outside |Out L
world %4 7
,/\\ ‘ /’/
) 4% |4
&Job 9>/
)
v
(o)
Ny

FIGURE 3 Animated representation of an operating system.

With multiprogramming, one program has a higher priority than the
other. For instance, if Program 1 in Figure 4 had the higher priority then
it would have control of the computer. When input/output operations
are being performed for Program 1 (for instance, a card is being read),
the computer must wait for this relatively slow mechanical operation to
be completed. During this wait time, control can temporarily be passed
to the lower-priority Program 2. When the input or output operation is
completed, control will then be returned, via the supervisor, to the higher-
priority Program 1.

Another commonly used technique employed to serve the computer
user is zime sharing. Generally speaking, time sharing refers to the allo-

Program 1 Limited
Program 1 to Working in This
Portion of Storage

Program 2 Limited
Program 2 to Working in This
Portion of Storage

FIGURE 4 Two programs in storage—multiprogramming.

6
INTRODUCTION

cation of computer resources in a time-dependent fashion to several
programs simultaneously in storage. The principal notion of a time-sharing
system is to provide a large number of users direct access to the computer
for problem solving. The user thus has the ability to “‘converse” directly
with the computer for problem solving (hence the terms conversational or
interactive computing). In multiprogramming the principal consideration
is to maximize utilization of the computer; in time sharing it is, in a sense,
to maximize efficiency of each computer user and keep him/her busy.
Figure 5 illustrates the notion of a time-shared system. Each user has

Audliory

. sorage
Supervisor
User 1
User 1
User 2 User: 2
User 3

User 3

FIGURE 5 Time-sharing environment.

his/her own communications terminal, portion of storage, and auxiliary
storage. In contrast to multiprogramming where programs are executed
on a priority basis, with time sharing the CPU time is divided among
the users on a scheduled basis. Each program is allocated its slice of the
CPU time (commonly measured in milliseconds) based on some pre-
determined scheduling basis beginning with the first program and pro-
ceeding through the last. Upon completing the cycle, it is begun again
so that an individual user scarcely realizes that someone else is also using
the computer.

Time-sharing terminals have come into common use in both education
and business for the purpose of programming. In fact, many computer
systems include special interactive Fortran programming systems for use
on a time-sharing operation.

