[BASIC-PLUS
And YAX BASIC
‘Structured
ngrammmg’

il _w;gﬁmn;D.LH:ARTER

'ROBERTA. LEOPOLD

BASIC-PLUS |
| And VAX BASIC
Structured

__Programming

EDWARD D. HARTER

Boeing Computer Services

ROBERT A. LEOPOLD
Robert A. Leopold and Associates e

Prentice Hall, Englewood Cliffs, New Jersey 07632

Lfbrary of Congress Cataloging-in-Publication vru...

HARTER, EDWARD D., (date)
BASIC-PLUS and VAX BASIC structured programming.

Includes index.

1. BASIC-PLUS (Computer program language)
2. BASIC (Computer program language) 3. VAX-11
(Computer)—Programming. 4. PDP-11 (Computer)—
Programming. 1. Leopold, Robert A., (date)
II. Title.

QA76.73.B3H365 1988 005.13'3 " 87-17457
ISBN 0-13-065905-3 . ;

Editorial/production supervision and .
interior design: Joan McCulley

Cover design: Lundgren Graphics, Ltd.

Manufacturing buyer: Gordon Osbourne -

== © 1988 by Prentice Hall
A Divison of Simon & Schuster, Inc.
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8'7 6 5!;4;{3;2 |

ISBN ueia-nLSHus;a“ 025

: P-namcs-mu lmnmmomu. (UK) LimiTep, London
Pmmu OF AUSTRALIA PTY. LIMITED, Sydney

- PRENTICE-HALL CANADA INc., Toronto

= WMLH&MM, S.A. Mexico

‘-H'SIIONQSCBU-SI'B.IASIAPI'E L., Singapore :
Enmnhnmce-nu.x.nonm.,l.m Rwdelmmro

L__Preface

’l'hls book is imended for use in. a ﬁrst course on computer programming and
} assumes no prior knqwledge of eompmm on the reader’s part. It contains a wide
- range of matenﬁl, however, and is smtable for either a one- or a two-semester
course;. iy LY
From'a begmrler s point of v1ew, the chief advantages of BASIC have to do
thh its ease of use. The syntax is sunple and flexible, and BASIC operates in a
congemal and user-friendly environment. ' As a consequence, the student is able
. to learn the'language, qmckly and to focus upon logical issues without being dis-
“tracted by the detmls\of data types, storage formats, and so on. Traditionally,
however, these advantages ‘have had their down side, because the student who
learns in the easy-does-it school often gains very little knowledge about computers.
Also, the student who learns in the easy-does-it school often acquu'es programming
habits which, by contemporary standards, are not good. Our aim in this book is
to capitalize on the advantages of BASIC and to avoid the down side.

The fundamental concepts of computer architecture and data representation
are presented at appropnaté places in this book, and the principles of structured
programming are emphasizec throughout: control structures are limited to decision
making with IF/THEN/ELS and looping with UNTIL, WHILE, and FOR/NEXT.
We intentionally postpone any abstract discussion of the concept of structured
programming until Chap. 12, ‘however, because it is out belief that such discussions
make sense only if the' student has already acquired the proper habits through
repeated exposure to good examples. Also, the concept of modular programming
with subroutines and programmer-defined functions is introduced somewhat late
(Chaps. 10 and 11)—not because we regard it as ummportant but because students
are not easily sold on the idea of modular programmmg in BASIC until they know
enough to tackle problems of appreciable size.

The book is organized into four main parts. Part I (Chaps. 1 through 6)
covers the fundamentals: arithmetic, input and output, data types, and documen-
tation techniques. Part II (Chaps. 7 through 9) deals with control structures:
decnsxon making and looping. Part III (Chaps. 10 through 12) covers the principles

XV

3 i

~ of modular programming: modular design, subroutines, and programmer-defined
functions. Part IV (Chaps. 13 through 17) deals with specific application areas:
array handling, sorting, string handling, and file handling. For a practical reason
(namely, to enable students to write interesting programs early), FOR/NEXT loops
are introduced ahead of schedule—in Chap. 5.

The core of the subject matter is presented in Chaps. 1 through 12, and it is
assumed that all these chapters will be covered by the instructot. Chaps. 1 through
6 can be covered fairly quickly, but Chaps. 7 through 12 might require more time.
The material in Chaps. 13 through 17 is somewhat more advanced in nature, and
it is not assumed that all these chapters will be covered—especially in a one-
semester course. = It is assumed that Chap. 13 (on arrays) will be covered, however,
because all the subsequent chapters presuppose a knowledge of arrays. Chap. 14
(on sorting and searching) can be regarded as optional, but it is strongly recom-
mended, especially if Chaps. 16 and 17 (on file handling) are to be covered.
Chapter 15 (on string handling) also can be considered optional. Chapters 16 and
17 (on file handling) can be regarded as optional, but Chap. 17 presupposes Chap.
16. The most likely paths to be taken through this book, therefore, are those
indicated below. : :

We wish to express our sincere gratitude to the following colleagues, each of
whom read our text in manuscript form and off red many valuable suggestions:
Mr. Jim Bublitz (Waukesha County ATecliﬁical,}hsumte); Dr. Edgar B. Lewis
_ (Arizona State University), Dr. Robert I. Matthews (University of Puget Sound),
Dr. Ralph A. Morrelli (Trinity College of Hartford, ‘Connecticut), and Dr. Keith -
B. Olson (Montana College of Mineral Science and Fechnology). ‘We also wish
to convey our thanks to Pacific Lutheran University of Tacoma, Washington, for
the use of a VAX-11/750; to Robert Morris College of Chicago, Illinois, for the
use of a PDP-11/44; and to Ms. Frances Greenleaf for the use of the telephone
modem with which most of the example programs were tested. Finally, special’
thanks go to Ms. Joan McCulley and Ms. Marcia Horton of Prentice Hall for their
kind and professional assistance during the preparation of the manuscript and the
production of this book. e

xvi : Preface

'L_cContents

PREFACE xv
Part1 THE FUNDAMENTALS - -
COMPUTERS Ahl) COMPUTER PﬂOGﬂAm

1-1.' A Model of a Typical Computer System 1

1-2. Software and Programmmg Langnagm 5

1-2A. Machine Language 6 .
1-2B. - Other Low-Level Languages° Assembly
‘Languages 6
1-2C. Further Improvemem ngh—Level
; Languages 7
1-2D. Compilers and Interpreters 9
1-2E. Apphcauons Software and Systems
; ~Software -

1-3. Survey of High-Level Languages 11

1-3A. FORTRAN -12
1-3B. .LISP 12
1-3C. COBOL 12
: -3D._ PLIL 185 58
1-3E. © BASIC 13
1-3F. fPascal .13 . . s
13G. PROLOG 14

1-3H.

Ada and MODULA-2

"

- 14

1-4.

1-5.

Chapter 2

2-1.

2-2

2-3.

2-4

2-5.

2-6.

Chapter 3

3-1.

3-2.

GETTING STARTED 18

Contemporary BASIC 15

The PDP-11 and VAX-11 Computers 16

Log-On 18)

2-1A. Log-On for PDP-ll Users 18
2—1B. - Log-On for VAX—ll Users 20
Log-Off 22

2-2A.~ Log-Off for PDP-11 Users 22
2-2B. .. Log-Off for VAX- 11 Users 23
Exéﬁple:'Hc;;v _t,o.Crea{fe and Execute

a Simple Program . 23

2-3A. Entering the Program at Your Keyboard
2-3B.. Correcting Errors 26 -
2-3C: The LIST Command 29

ressnons Snm le and Com und 30
- Exp ions: 31 npl po

f2-4A" Example Program with Compound
. ~Expressions 31

“2:4B. " The Order of Operations 32

2-4C. Parentheses 35

Variables 38

2-5A. Storing Values in Variables:
The LET Statement 38
2-5B. What Is a Variable? 40
2-5C.~ Printing the Value of a Variable 41

Finding the Roots of Numbers: Another Use
of Parentheses 42

SYSTEM COMMANDS 52
Workspace and Permanent Storage 54

The SAVE Command 54

Conterts

3-3. The DIR Command

3-3A. The DIR Command for PDP-11 Users 58
3-3B. The DIR Command for VAX-ll Users 59

3-4. The OLD Command 59

3-5. The REPLACE Command 61
3-5A. - Effects of the REPLACE Command
- for PDP-11 Users - 62
3-5B. Effects of the REPLACE Command
for VAX-11 Users ' 63
3-6. The RENAME Command 65
3-7. The DCL RENAME Command 67

\

3-8. . The UNSAVE Command - 69
3-9. System Commaﬁii Summary 70

3-10. Co‘mmon Erroré in the Use of System Commands 72 ;

Chapter 4 INPUT AND OUTPUT 78

4-1. Introduction to Data Types 79

4-1A. Constants (Nuxﬁericand String) 80
4-1B. Variables (Numeric and String) 82

4-2. Extended Variable-Names 83

4-3. The INPUT Statement 86

4-3A. An Example 86
4-3B.. Printing with Semicolons 88
4-3C. Including the Prompt within
the INPUT Statement 91
4-3D. - Using the INPUT Statement
: for String Data 91"
4-3E. . Using the INPUT Statement
with Multiple Data Items 93

4-4.. More on Printing with Semicolons 94

4-5. String versus Numeric Operations 95

Contents

Chapter 5

Chapter 6

viii

6-1.

6-2.

6-3.

6-4.

6-5.

e e R

ADDITIONAL INPUT AND OUTPUT
TECHNIQUES 104 :

FOR/NEXT Loops 104

Input with the READ Statement 107

Printing with Commas 1.14 |

Printing with PRINT TAB Statements 116

Printing Numbers with PRINT USING Statements

Printing Tables with PRINT USING Statements 127

Printing Character Strings with PRINT USING
Statements 130

ROUNDING OUT THE FUNDAMENTALS 147

Numeric Data in More Detail 147

6-1A. Representing Numbers
. in Decimal Format = 147
6-1B. Exponential Format 148
6-1C. More Data Types (Real Numbers
- and Integers) 150
6-1D. Options Available to VAX-11 Users 153

Supplied Functions 154

Rounding '1‘61\

6-3A. Roundmg to the Nearest Integer 162
6-3B. Roundmg to Other Powers of 10 164

Program Development Aids 167

6-4A. Pseudocode | 168
6-4B. Flowcharts © 172

Program Documentation 174

Contents ;

Part 2 ~ CONTROL STRUCTURES

Chapter 7 DECISION MAKING 184

7-1. Decision Making with the IF/THEN/ELSE
- Statement. . 184

7-2. More about Conditions 186
7-3. : Fomatting Statements for Greater Readability 189
7-4. . IFs without ELSEs 191
.7-5. ; Mulﬁple Instructions with IF Statements 194
7-6. 'Nésted Decisions 200
“747. . Logical Conditions 212
7-7A. - The OR Condition 213
7-7B. The AND Condition 214
7- 7C The NOT Condmon 216

78 \Dec1s1on Makmg with the GOTO Statement 217

 Chapter8 LOOPS: THE FUNDAMENTAL TECHNIQUES 234
5 81, Counting i;ggpézj'f’relirr‘xinary Examples 235

§ 8-2.': Controlling Loops with IF Statements
~ and GOTO Statements 240 :

83, The UNTIL Loop 246
84, The WHILE Loop 349"
8-5. The FOR/NEXT Loop zsz i
8-6. Controllmg the Ad]ustment The STEP Functlon 256
8-7. Accumulatmg Totals w1thm‘a Loop - 260

8-8. Noncounting Loops 263

- Contents

Chapter 9

9-1.

9-2.

9-4.

Part 3

Chapter 10

10-1.

10-2.

10-3.

10-4.

Chapter 11

11-1.

11-2.

11-3.

11-4.

LOOPS: ADDITIONAL TECHNIQUES
AND APPLICATIONS

Nested Loops

9-1A. Introductory Exambles of Nesting 278
9-1B. Another Example: Compound Interest 285

New Methods for Looping with READ/DATA 290

278

278

9-2A. The Header Record Method 292
9-2B. The Trailer Record Method 293

Disk Files 298

9-3A. Reading Data from Disk Files
9-3B. Writing Data into Disk Files

A Useful Application: Summarizing the Data 305

STRUCTURED PROGRAMMING

LR ARt

Modular Program Design

An Examplé "321'
High-Level Design' 323
Lower-Level Design 324

Review and Révision 327

MODULAR PROGRAMMING WITH SUBROUTINES
AND FUNCTIONS '

334

Fundamentals of Subroutines 335

Nested Subroutines 339
An Application: The Grade Report Program 344

The Grade Report Subroutineé' 346

299

302

Contents

11-5.

11-6.
11-7.

11-8.

Chapter 12

12-1.
12-2.

12485

12-4.

12-5.
12-6.

1275,

Part 4

‘ Chapter 13
139

Contents

Programmer-Defined Functions 350

11-5A. A Rounding Function = 351
11-5B. An Averaging Function 354

Multiple-Line Functions 354
Nested Function Definitions 360

The Complete Program 365

STRUCTURED PROGRAMMING AND MODULAR
PROGRAMMING WITH EXAMPLES
AND APPLICATIONS 376

Structured Programming 377
Logic Structure and Source-Language Siructure 379

Structured Programming and Modular
Programming 384 :

The ON-GOSUB Statement * 385

Refining an Interactive Program = 391
12-5A. Checking Input 391

12-5B. Appearance of the Program 393
Modifying the Grade Report Program 398

12-6A. The High-Level Logic 400
12-6B. The Details 404 ;

. Planning P_rinted Output fﬂo'

APPI.ICATIONS

ARRAYS 424 _;,‘.

Introductxon to Arrays :
13-1A. Subscripted Vi

, uégblc;s E
13-1B. Subscnpted ’Variables ln BASIC 10, L

-

xi

132,

133

134,
135,

13-6.

Chapter 14
i 141,
14-2.

14-3.

14-4.

14-5.

14-6.

i4-7.

Chapter 1_5 ;

15-1.

xii

13-1C. Using Subscripted Variables 428

- 131D. A Sample Program 430
13-1E. . Another Example: Arrays of Strings 432

The DIM Statement 434
Magic Nunibers a37
Calculations in Arrays a0
Searching an Al%ra).' 444

Two-Dimensional Arrays - 449

Program 455

-~ 13-6A. First ’Ex_ample: A Mileage Program 452
13-6B. Second Example: An Improved Mileage

13-6C. Third Example: Sales Analysis 457

13-6D. Fourth Example: Improved Sales
Analysis 461 ;

SORTING AND SEARCHING TECHNIQUES 431

The Bubble Sort - 482
‘Refining the Bubble Sort 487
The Insertion Sort 490

Refining the Insertion Sort 496

Sorting Records in Files 499

Sorting on Multiple Keys 502

The Binary Search 505

STRING PROCESSING 516

Substring Processing 517

15-1A. The MID Function 518

15-1B. Extraction of Substrings 521
15-1C. 'The LEFT and RIGHT Functions
15-1D. The LEN Function 522

522

Contents

15-1E. The INSTR Function 523
15-1F. Things To Know 526

R Conversion Operations = 527

i T ‘The VAL Function 528
Comparison of Strings 532
The NUM1$ Function 535

2 2D. The CHRS and ASCII Functions 536 :
ol S 2E,. "The CVTSS Functxon 540

15-3 :"wtrmg Anthmeuc 542 Bl : o \
". . "T153A. The SUMS Function - 5 =S
. 15-3B. . The DIF$ Function 543 S

.15-3C. The PRODS$ Function 543
15—3D . The QUO$ Functlon 543

"15-4.. 'Compound Loglcal Conditions 544

Chapter 1(_;7.-‘('SEQUENTiAL FI'LE Pnocessme " 'seg
. 16-1 Seq,uence Chécking 557

16-2. Control Breaks 559
16-2A. - Single-Level Control Breaks = 561
16-2B.. Double-Level Control Breaks 564
16-2C. Control Headings 570

16-3. File Merges - 574

16-4.. Master File Updates 583

16-5. Master File Updates with Insertions 590

Chapt‘er_‘ 17 DIRECT ACCESS FILE PROCESSING 604
17-1». Introduction to Direct Access Files - 605

17-2. _Relative_. Files in VAX BASIC 607

17-2A. . The MAP and OPEN Statements 607

17-2B. Writing Records into a Relative File

; with the PUT Statement = 609

17-2C. Reading Records from a Relative File
with the GET Statement 610

Contents xiii

Appei_rdix A

Appendix B

xiv

17-2D.
17-2E.

17-2F.

Initializing a Relative File 611

Writing Records with the UPDATE
Statement 612

The Program 615

17-3. Block I/0 Files in BASIC-PLUS 621

17-3A.
17-3B.

17-3C.;

17-3D.
17-3E.
17-3F.
17-3G.

17-4. Hashing

17-4A.
17-4B.
17-4C.

The OPEN and FIELD Statements 621
Writing Records into a Block I/0 File
with the PUT Statément 623
Reading Records from a Block I/O File
with the GET Statement 625
Initializing a Block I/O File 626
Putting Records into an Initialized File 628
The Program = 629
Processing Numeric Data in the I/0
Buffer 633

636
Sequential Processing of a Hashed File 638

Collisions 639
Implications 641

APPENDICES

ASC!I CODES 647

KEYWORLS 648

BASIC-PLUS 648
VAX BASIC 649

INDEX

653

Contents

Computers andl Computér |

L Programming _

Contrary to popular belief, computers are not “smart.” In fact, they cannot do
anything unless we tell them exactly whatto do. The main reason we use computers
is that they can follow our instructions very quickly and accurately. They cannot
think for themselves. '

Moreover, the basic operations that computers can perform are few in number
and very simple in nature: Computers can do simple arithmetic. They c: n compare
numbers and determine whether the first is less than or equal to the second. They
can move numbers from place to place within their “memories.” And so on.
Virtually all of the basic actions that computers can perform are as simple as these.

' To program a computer means to prepare a set of instructions for the com-
puter to follow. The more complicated tasks we often associate with computers,
such as preparing paychecks, guiding rockets to the moon, and playing arcade
games, are accomplished by programming, or instructing, computers to perform
sequences of the simple types of actions described above. Imagine, for example,
a person who does not know how to multiply but does know how to add. We
could *“‘program” this person to multiply 3 x 4 by instructing him or her to perform
a sequence of additions: : .
3+43+3+3

This, by the way, is how some computers multiply.

"1 This textbook is an introduction to the art of programming computers. More
specifically, it is an introduction to programming computers in the language.called
BASIC. The first chapter is intended to provide a general knowledge o. this art
and an understanding of how BASIC fits into the overall landscape of computer
programming. ; ;

1-1 A MODEL OF A TYPICAL COMPUTER SYSTEM

il sy
In this section we shall describe a simple model of a typical computer system. The
purpose of this discussion is to give you a general concept of what happens “under
the hood” when you use a computer. .

/¢

. Ina general way a computer system is similar to a factory. Like a factory,
it does the followmg : :

- o It receives both raw materials and instructions which tell it what to do with -

the materials. = The materials and the instructions are called the input to the
- system. - ‘ :

e It transforms the. matenals accordmg to the i

- processing.

e It produces something useful for the outsnde wortd';" Thxsas called the output
from the system.

t-fli‘étiohs. This is called

'

% Notxcq that the mput consists of both raw materials and instructions. The raw
;matenals are called data, and the instructions are called programs. The three
. activities just mennoned——obtammg input, processing: data and producmg out-
put{—are the three major functions of any computer system ThlS is depicted in
. Fig. -1
A In a computer system these three act1v1t1es are handled by physical devices
-~ called lnpul devices, the processor, and output devices, respectively. This is de-
& plcted in Fig. 1-2. Typical input devices include terminal keyboards, card readers,

magnetic tape drives, and magnetic disk drives. These devices are used to send

data and programs to the processor. Typical output devices include prmters tele-
vision-like cathode ray tubes (CRTs), magnetic tape drives, and magnetic disk
drives.. These devices are used to receive output from the processor. Note that
the same device can be used both for input and for output. Tape drives and disk
drives, for,example, can be used both to send input to the processor and to receive

putput from the processor. Dual-purpose devices such as these are often called.

input/output devices.
‘ The processor is the heart of the system Thxs is where the input is sent,
where the data are processed, and where the output comes from. A typical pro-
cessor includes three physically distinct components—a control unit, a memory
unit, and an arithmetic-logic unit—as depxcted in Fig. 1-3. The arithmetic-logic
unit consists of‘circuits that perform arithmetic operations (such as addition and
subtraction) and-logical operations (such as the comparison of numbers). The
memory unit—often called main memory—consists of circuits that store both
_ instructions (programs) and data. The control unit consists of circuits that copy
and read the instructions from main memory, one at a time. The control unit is

‘wired in such a way that it responds to these instructions by causing the appropriate -

actions to take place in other parts of the system. When the control unit reads

an instruction to add two numbers, for example, it causes the numbers to be copxed,

Figure 1-1

2 Computers and Computer Programming Chap. 1

e

/7 .41: ,an[,./

b, e

LF a i

