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L__Preface

’l'hls book is imended for use in. a ﬁrst course on computer programming and
} assumes no prior knqwledge of eompmm on the reader’s part. It contains a wide
- range of matenﬁl, however, and is smtable for either a one- or a two-semester
course;. iy LY
From'a begmrler s point of v1ew, the chief advantages of BASIC have to do
thh its ease of use. The syntax is sunple and flexible, and BASIC operates in a
congemal and user-friendly environment. ' As a consequence, the student is able
. to learn the'language, qmckly and to focus upon logical issues without being dis-
“tracted by the detmls\of data types, storage formats, and so on. Traditionally,
however, these advantages ‘have had their down side, because the student who
learns in the easy-does-it school often gains very little knowledge about computers.
Also, the student who learns in the easy-does-it school often acquu'es programming
habits which, by contemporary standards, are not good. Our aim in this book is
to capitalize on the advantages of BASIC and to avoid the down side.

The fundamental concepts of computer architecture and data representation
are presented at appropnaté places in this book, and the principles of structured
programming are emphasizec throughout: control structures are limited to decision
making with IF/THEN/ELS and looping with UNTIL, WHILE, and FOR/NEXT.
We intentionally postpone any abstract discussion of the concept of structured
programming until Chap. 12, ‘however, because it is out belief that such discussions
make sense only if the' student has already acquired the proper habits through
repeated exposure to good examples. Also, the concept of modular programming
with subroutines and programmer-defined functions is introduced somewhat late
(Chaps. 10 and 11)—not because we regard it as ummportant but because students
are not easily sold on the idea of modular programmmg in BASIC until they know
enough to tackle problems of appreciable size.

The book is organized into four main parts. Part I (Chaps. 1 through 6)
covers the fundamentals: arithmetic, input and output, data types, and documen-
tation techniques. Part II (Chaps. 7 through 9) deals with control structures:
decnsxon making and looping. Part III (Chaps. 10 through 12) covers the principles

XV
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~ of modular programming: modular design, subroutines, and programmer-defined
functions. Part IV (Chaps. 13 through 17) deals with specific application areas:
array handling, sorting, string handling, and file handling. For a practical reason
(namely, to enable students to write interesting programs early), FOR/NEXT loops
are introduced ahead of schedule—in Chap. 5.

The core of the subject matter is presented in Chaps. 1 through 12, and it is
assumed that all these chapters will be covered by the instructot. Chaps. 1 through
6 can be covered fairly quickly, but Chaps. 7 through 12 might require more time.
The material in Chaps. 13 through 17 is somewhat more advanced in nature, and
it is not assumed that all these chapters will be covered—especially in a one-
semester course. = It is assumed that Chap. 13 (on arrays) will be covered, however,
because all the subsequent chapters presuppose a knowledge of arrays. Chap. 14
(on sorting and searching) can be regarded as optional, but it is strongly recom-
mended, especially if Chaps. 16 and 17 (on file handling) are to be covered.
Chapter 15 (on string handling) also can be considered optional. Chapters 16 and
17 (on file handling) can be regarded as optional, but Chap. 17 presupposes Chap.
16. The most likely paths to be taken through this book, therefore, are those
indicated below. : :

We wish to express our sincere gratitude to the following colleagues, each of
whom read our text in manuscript form and off red many valuable suggestions:
Mr. Jim Bublitz (Waukesha County ATecliﬁical,}hsumte); Dr. Edgar B. Lewis
_ (Arizona State University), Dr. Robert I. Matthews (University of Puget Sound),
Dr. Ralph A. Morrelli (Trinity College of Hartford, ‘Connecticut), and Dr. Keith -
B. Olson (Montana College of Mineral Science and Fechnology). ‘We also wish
to convey our thanks to Pacific Lutheran University of Tacoma, Washington, for
the use of a VAX-11/750; to Robert Morris College of Chicago, Illinois, for the
use of a PDP-11/44; and to Ms. Frances Greenleaf for the use of the telephone
modem with which most of the example programs were tested. Finally, special’
thanks go to Ms. Joan McCulley and Ms. Marcia Horton of Prentice Hall for their
kind and professional assistance during the preparation of the manuscript and the
production of this book. e
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Computers andl Computér |

L Programming _

Contrary to popular belief, computers are not “smart.” In fact, they cannot do
anything unless we tell them exactly whatto do. The main reason we use computers
is that they can follow our instructions very quickly and accurately. They cannot
think for themselves. '

Moreover, the basic operations that computers can perform are few in number
and very simple in nature: Computers can do simple arithmetic. They c: n compare
numbers and determine whether the first is less than or equal to the second. They
can move numbers from place to place within their “memories.” And so on.
Virtually all of the basic actions that computers can perform are as simple as these.

' To program a computer means to prepare a set of instructions for the com-
puter to follow. The more complicated tasks we often associate with computers,
such as preparing paychecks, guiding rockets to the moon, and playing arcade
games, are accomplished by programming, or instructing, computers to perform
sequences of the simple types of actions described above. Imagine, for example,
a person who does not know how to multiply but does know how to add. We
could *“‘program” this person to multiply 3 x 4 by instructing him or her to perform
a sequence of additions: : .
3+43+3+3

This, by the way, is how some computers multiply.

"1 This textbook is an introduction to the art of programming computers. More
specifically, it is an introduction to programming computers in the language.called
BASIC. The first chapter is intended to provide a general knowledge o. this art
and an understanding of how BASIC fits into the overall landscape of computer
programming. ; ;

1-1 A MODEL OF A TYPICAL COMPUTER SYSTEM

il sy
In this section we shall describe a simple model of a typical computer system. The
purpose of this discussion is to give you a general concept of what happens “under
the hood” when you use a computer. .

/¢



. Ina general way a computer system is similar to a factory. Like a factory,
it does the followmg : :

- o It receives both raw materials and instructions which tell it what to do with -

the materials. = The materials and the instructions are called the input to the
- system. - ‘ :

e It transforms the. matenals accordmg to the i

- processing.

e It produces something useful for the outsnde wortd';" Thxsas called the output
from the system.

t-fli‘étiohs. This is called

'

% Notxcq that the mput consists of both raw materials and instructions. The raw
;matenals are called data, and the instructions are called programs. The three
. activities just mennoned——obtammg input, processing: data and producmg out-
put{—are the three major functions of any computer system ThlS is depicted in
. Fig. -1
A In a computer system these three act1v1t1es are handled by physical devices
-~ called lnpul devices, the processor, and output devices, respectively.  This is de-
& plcted in Fig. 1-2. Typical input devices include terminal keyboards, card readers,

magnetic tape drives, and magnetic disk drives. These devices are used to send

data and programs to the processor. Typical output devices include prmters tele-
vision-like cathode ray tubes (CRTs), magnetic tape drives, and magnetic disk
drives.. These devices are used to receive output from the processor. Note that
the same device can be used both for input and for output. Tape drives and disk
drives, for,example, can be used both to send input to the processor and to receive

putput from the processor. Dual-purpose devices such as these are often called.

input/output devices.
‘ The processor is the heart of the system Thxs is where the input is sent,
where the data are processed, and where the output comes from. A typical pro-
cessor includes three physically distinct components—a control unit, a memory
unit, and an arithmetic-logic unit—as depxcted in Fig. 1-3. The arithmetic-logic
unit consists of‘circuits that perform arithmetic operations (such as addition and
subtraction) and-logical operations (such as the comparison of numbers). The
memory unit—often called main memory—consists of circuits that store both
_ instructions (programs) and data. The control unit consists of circuits that copy
and read the instructions from main memory, one at a time. The control unit is

‘wired in such a way that it responds to these instructions by causing the appropriate -

actions to take place in other parts of the system. When the control unit reads

an instruction to add two numbers, for example, it causes the numbers to be copxed,

Figure 1-1

2 Computers and Computer Programming Chap. 1
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