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Preface

This book is based on my notes from lectures to students of electrical, elec-
tronic, and computer engineering at South Bank University. It presents
a first year degree/diploma course in engineering mathematics with an
emphasis on important concepts, such as algebraic structure, symme-
tries, linearity, and inverse problems, clearly presented in an accessible
style. It encompasses the requirements, not only of students with a good
maths grounding, but also of those who, with enthusiasm and motiva-
tion, can make up the necessary knowledge. Engineering applications
are integrated at each opportunity. Situations where a computer should
be used to perform calculations are indicated and ‘hand’ calculations
are encouraged only in order to illustrate methods and important special
cases. Algorithmic procedures are discussed with reference to their effi-
ciency and convergence, with a presentation appropriate to someone new
to computational methods.

Developments in the fields of engineering, particularly the extensive
use of computers and microprocessors, have changed the necessary sub-
ject emphasis within mathematics. This has meant incorporating areas
such as Boolean algebra, graph and language theory, and logic into
the content. A particular area of interest is digital signal processing,
with applications as diverse as medical, control and structural engineer-
ing, non-destructive testing, and geophysics. An important consideration
when writing this book was to give more prominence to the treatment
of discrete functions (sequences), solutions of difference equations and z
transforms, and also to contextualize the mathematics within a systems
approach to engineering problems.
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m Sets, functions,

and calculus






1.1 Introduction

Figure 1.1 The voltage V is
an equivalent voltage found
by considering the combined
effect of circuit elements in
the rest of the network.

Sets and functions

Finding relationships between quantities is of central importance in
engineering. For instance, we know that given a simple circuit with a
1000 €2 resistance then the relationship between current and voltage is
given by Ohm’s law, I = V /1000. For any value of the voltage V we can
give an associated value of /. This relationship means that / is a function
of V. From this simple idea there are many other questions that need
clarifying, some of which are:

1. Are all values of V permitted? For instance, a very high value of the
voltage could change the nature of the material in the resistor and the
expression would no longer hold.

2. Supposing the voltage V is the equivalent voltage found from con-
sidering a larger network. Then V is itself a function of other voltage
values in the network (see Figure 1.1). How can we combine the func-
tions to get the relationship between this current we are interested in
and the actual voltages in the network?

3. Supposing we know the voltage in the circuit and would like to know
the associated current. Given the function that defines how current
depends on the voltage can we find a function that defines how the
voltage depends on the current? In the case where I = V /1000, it is
clear that V = 1000/. This is called the inverse function.

Another reason exists for better understanding of the nature of func-
tions. In Chapters 5 and 6, we shall study differentiation and integration.
This looks at the way that functions change. A good understanding of
functions and how to combine them will help considerably in those
chapters.

The values that are permitted as inputs to a function are grouped
together. A collection of objects is called a set. The idea of a set is very
simple, but studying sets can help not only in understanding functions
but also help to understand the properties of logic circuits, as discussed
in Chapter 10.

Network R
of
generators R R
and L %
resistances | Vv




4 Sets and functions

1.2 Sets

A B

f g

Figure 1.2 A Venn diagram
of the sets & =
{a,b,c,d, e, f,g},A={a,b,c},
andB = {d, e}.

A set is a collection of objects, called elements, in which the order is not
important and an object cannot appear twice in the same set.

Example 1.1 Explicit definitions of sets, that is, where each element is
listed, are:

A ={a,b,c}
B ={3,4,6,7,8,9}
C = {Linda, Raka, Sue, Joe, Nigel, Mary}

a € A means ‘a is an element of A’ or ‘a belongs to A’; therefore in the
above examples:

3e¢eB
Linda € C

The universal set is the set of all objects we are interested in and will
depend on the problem under consideration. It is represented by &.

The empty set (or null set) is the set with no elements. It is represented
by @ or { }.

Sets can be represented diagrammatically — generally as circular
shapes. The universal set is represented as a rectangle. These are called
Venn diagrams.

Example 1.2
& ={ab,c,d e, f,g}, A={ab,c}, B=1{de}

This can be shown as in Figure 1.2.

We shall mainly be concerned with sets of numbers as these are more
often used as inputs to functions.

Some important sets of numbers are (where ‘...’ means continue in
the same manner):

The set of natural numbers N = {1,2,3,4,5,...}
The set of integers Z = {...—-3,-2,—1,0,1,2,3...}
The set of rationals (which includes fractional numbers) Q

The set of reals (all the numbers necessary to represent points on a
line) R

Sets can also be defined using some rule, instead of explicitly.

Example 1.3 Define the set A explicitly where & = N and
A={x]|x <3}

Solution The A = {x|x < 3}isread as ‘A is the set of elements x, such
that x is less than 3’. Therefore, as the universal set is the set of natural
numbers, A = {1, 2}

Example 1.4 & = days of the week and A = {x|x is after
Thursday and before Sunday}. Then A = {Friday, Saturday}.



Figure 1.3 A Venn diagram
of a proper subset of B:
A cCB.

1.3 Operations
on sets

Figure 1.4 The shaded area
is the complement, A’, of the
setA.

Sets and functions 5

Subsets

We may wish to refer to only a part of some set. This is said to be a subset
of the original set.

A C Bisread as ‘A is a subset of B’ and it means that every element
of A is an element of B.

Example 1.5

&=N
A=1{1,2,3}, B={1,2,3,4,5}

Then A C B

Note the following points:

All sets must be subsets of the universal set, that is, A € & and
BCé¢

A set is a subset of itself, thatis, A C A

IfACBandB C A, then A =B

Proper subsets

A C Bisread as ‘A is a proper subset of B’ and means that A is a subset
of B but A is not equal to B. Hence, A C B and simultaneously B C A
are impossible.

A proper subset can be shown on a Venn diagram as in Figure 1.3.

In Chapter 1 of the background Mathematics notes available on the com-
panion website for this book, we study the rules obeyed by numbers
when using operations like negation, multiplication, and addition. Sets
can be combined in various ways using set operations. Sets and their
operations form a Boolean Algebra which we look at in greater detail
in Chapter 4, particularly its application to digital design. The most
important set operations are as given in this section.

Complement

A or A’ represents the complement of the set A. The complement of A is
the set of everything in the universal set which is not in A, this is pictured
in Figure 1.4,

Example 1.6
&=N
A={x|x>75}

then A’ = {1,2,3,4,5)



