«6 BASIC Programs
for your Micro

Derrick Daines

______Newnes Microcomputer Books

26 BASIC Programs

for your Micro

Derrick Daines

Newnes Technical Books

Newnes Technical Books

is an imprint of the Butterworth Group

which has principal offices in

London, Sydney, Toronto, Wellington, Durban and Boston

All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying
and recording, without the written permission of the copyright
holder, application for which should be addressed to the Publishers.
Such written permission must also be obtained before any part of this
publication is stored in a retrieval system of any nature.

This book is sold subject to the Standard Conditions of Sale of Net
Books and may not be re-sold in the UK below the net price given
by the Publishers in their current price list.

First published 1982

© Butterworths & Co. (Publishers) Ltd, 1982
Borough Green, Sevenoaks, Kent TN15 8PH

British Library Cataloguing in Publication Data
Daines, Derrick

26 BASIC programs for your micro.

1. Microcomputers—Programming

2. Basic (Computer program language)

I. Title

001.64'2 QA76.6.

ISBN 0-408-01204-8

Typeset by Tunbridge Wells Typesetting Services Ltd.
Printed in England by Page Bros Ltd, Norwich Norfolk

Preface

Here is a book of unique computer programs — that is, programs that cannot be
found anywhere else. Only two, ‘Power boat’ and ‘Place value’, have ever
appeared in print before. This book, therefore, is not just another collection of well-
worn programs but a wholly new text, with games and ideas that have never before
seen the light of day. The programs are all my own, so if there is any blame to be
attributed, that is mine too.

The programs can be graded in various ways. The method I have adopted here is
an empirical one, being based on a subjective assessment of length plus complexity.
No doubit this has given rise to quirks and anomalies, but it is hoped that these will
not detract from the user’s enjoyment.

The programs range from very simple to extremely complex. The former are
capable of translation on to the simplest of computers that support BASIC as a
programming language, while the latter require anything up to 13 K of memory. I
have included in the notes to each program comments on any special requirements.

Also included are notes of interest to budding computer programmers. I have
brought to the reader’s attention any items of special interest in each program that
are worthy of study and inclusion in other programs. In this way, I hope that the
enjoyment I derive from computer programming may be passed on to others, and
that the hobby we enjoy may be advanced. By studying these notes, the user will be
guided towards better and more complex programs, using the techniques
developed. D.D.

Contents

Introduction
Sum-difference (0.5 K)
Balancing act (1.2 K)
Pakistani pool (2 K)
Simon says (3.5 K)
Kim'’s game (2 K)
Place value (3.5 K)
Fizz Buzz (1.5 K)
Reports (2.5 K)

Slide (2.5 K)

Spelling test (3 K)
Junior arithmetic (1.5 K)
Number series (3 K)
Derby day (3 K)
Nuclear (3.5 K)
Number writer (2 K)
Pairs (3.5 K)

Speed reading (5 K)
Tickle (3 K)

Decoding quiz (3 K)
Power boat (3 K)
Submarine hunter (5 K)
Auction (5.5 K)
Waotsit? (2.1 K)
Haunted house (10 K)
Gunslinger (10.5 K)
Bond 007 (13 K)

11
14
16
19
22
25
28
32
36
39
43
48
24
57
63
67
71
75
80
86
94
97
105
115

Introduction

It tends to be axiomatic that the ‘best’ or ‘most natural’ version of BASIC is the one
that happens to run on your machine. As the owner and user of many versions, I
choose to write in SWTP BASIC because it is fairly easy to translate to other
BASICs. All the programs in this book have been written in this version, utilising an
SWTP 6800 computer with 32 K of memory, and saved on minifloppies. Very few
commands are machine-dependent (I give a list of those that are; some may be
omitted altogether). What follows here is a description of SWTP BASIC to smooth
over any difficulties encountered.

VARIABLES A variable can be any single letter, or a letter and a number 0-9.

STRING VARIABLES These are a single letter followed by $, and are used to
hold literal data. For example, A$ can be equated to ‘1224’ or ‘‘Example’’, but
not 1234. (The quotation marks define a string.) When SWTP BASIC initialises,
strings are set to 32 characters maximum, but this may be extended by use of the
STRING command, e.g. STRING = 50. Command lines are limited to 72
characters. Multiple statement lines are accepted with a colon (:) used as a
separator.

CONCATENATION Strings may be concatenated (joined together) by use of
the ‘ + ’ symbol. For instance, A$ = “HELLO”’:B$ = “JOHN”:C$ = A$ + B$§
(C$ will now contain “HELLOJOHN”’)

ARRAYS If not dimensioned by a DIM statement, a 10-element array is
assumed. Similarly with matrices — if not dimensioned, a 10 by 10 matrix is
assumed. To save memory, therefore, it is wise to dimension first. String variables
may also be dimensioned as an array.

INITIAL VALUES When variables are used for the first time, SWTP BASIC
assumes that they have initial value 0. It is not necessary to assign 0 to them first, as
in some BASICs.

LINE = X This command may be used to set the number of print positions in a
line, where X is the desired number of positions. If the print position is within 25 per
cent of the line length, and a space is encountered, SWTP BASIC will force a line-
feed and carriage-return, thus preventing words being split up at the end of a line.

DATA May be placed anywhere in the program. Commas are used to separate

1

items, but are not necessary at the end of a line. Numeric and string data may be
intermixed, but the program must call them in correct order. Strings do 7ot need
enclosing quotation marks unless they contain a comma, in which case quotation
marks must be used.

RESTORE Sets the data pointer back to the first DATA statement.

END Not required in SWTP BASIC unless it is necessary to end the program in
the middle of the listing. END may appear more than once and need not appear at

all.

FOR...TO...NEXT...STEP The FOR and NEXT statements are
used together to set up program loops. The variable in the FOR statement is set up
for the number of times it is desired to pass through the loop, with a minimum of 1.
When the NEXT is encountered, the variable is incremented by 1 if no STEP has
been defined, and execution resumes at the statement following the FOR . . . TO.
If the addition of the STEP develops a sum greater than the TO expression,
execution passes to the line following the NEXT statement. STEP can be negative,
in which case execution continues until the sum is /lss than the TO expression.
FOR, NEXT and STEP may be expressions, but they are evaluated once only.

GOSUB After a subroutine, control passes to the line following the GOSUB
statement.

GOTO An unqualified jump.

IF...THEN Ifthe relation given in the IF is ‘true’, control is given to the line
following the THEN. For example, IF X = 5 THEN 50 transfers control to line 50
ifand only if X = 5. If the relation is false, control passes to the line following the IF
— i.e. the rest of the line is not considered, even if it is a multiple-statement line.

It is also possible to execute a valid BASIC statement after the THEN. For
instance, IF X = 5 PRINT “CORRECT”’. Note also that SWTP BASIC will
assume the existence of THEN. Some demand that THEN be included.

INPUT Allows the user to enter data or strings. Various forms are allowed, as
(e.g.) INPUT X, Y, Z which will prompt three times for numeric data, or INPUT
Q$, R$ which will prompt twice for string input. Numerics entered for a string will
be accepted and converted into a string.

PRINT and INPUT statements may be combined, as in: INPUT “GIVE ME
A NUMBER”, N. This prints out to the screen the message GIVE ME A
NUMBER? (notice the addition of the ‘?” prompt), and waits for a numeric input.
Another point to notice about this command is the comma following the message
string; some BASICs have a semi-colon here.

LET This is optional.
ON...GOTOandON. . .GOSUB These statements transfer control to the

line numbers, depending on the value of the expression following ON. For
example:

ON X + 1 GOTO 100, 200, 300, 400
If X = 0, control will transfer to line 100; if X = 1, to line 200; if X = 2, to 300 and
if X = 3 to 400. Any other value for X will result in an error message.

REM Short for REMARK — an aid for human readers only. These lines may
be omitted, as when BASIC is running, all lines beginning with REM are ignored.

2

Functions

ABS(X) returns the absolute value of X; i.e. can never be negative.
ATAN(X) returns the angle in radians whose tangent is X.

ASC(STRING) returns decimal value of first character in the string; e.g.
ASC(““?”’) gives 63.

CHR$(X)returns a single character equivalent to the decimal ASCII value of X.
For example CHR$(65) gives A.

COS(X) returns cosine of X, which must be in radians.

DEF FNX(Y) = (exp) is where X can be any single letter, which names the
function. It allows the creation of any function, e.g. DEF FNA(Y) = 3.14*Y 1 2.
The Y is a dummy variable replaced by the actual variables desired when the
function is called, e.g.

100 LET G = FNA(23)

will cause G to be assigned the value 1661.06 since Y was replaced by 23. If a
variable occurs in the expression that is different from the dummy, then the current
value of that variable is taken into account when evaluating.

EXP(X) returns the base of natural logarithms raised to the Xth power. The
inverse of LOG(X).

INT(X) returns the greatest integer less than X, i.e. rounds down.

LEFT$(X$,N) returns a string of characters N characters long, commencing at the
left-most in X§.

RIGHT$(X$,N) is as above, from the right-most.

MID$(X$,S,T) extracts from X$ a string of characters T characters long, starting
at the Sth.

LEN(X$) returns the number of characters currently in X$, including spaces.
LOG(X) returns the natural logarithm of X.

RND & RND(0) return a random number between 0 and 1.

SGN(X) returns the sign of X; i.e., —4 produces —1; + 4 produces + 1.
SIN(X) returns the sine of the angle X (in radians).

SQR(X) returns the square root of X.

STR$(X) translates a numeric variable into a string.

VAL(X$) is the opposite: it returns as a numeric constant the first value
encountered in X$.

TAB(X) moves the print position to the Xth place on the line. May be an
expression. Note that if whatever is to be printed at a tab position is on another line,
or following another PRINT statement, a semicolon (;) is needed following TAB in
order to inhibit the L/F, C/R. For example, PRINT TAB(16);

TAN(X) returns the tangent of the angle X (in radians).

Note on graphics

No graphics have been included in these listings. This will no doubt cause
considerable criticism in some quarters, but readers will appreciate that all graphics
are machine-dependent. Including graphics would therefore restrict possible
readers to the owners of one type of machine only, whereas omitting graphics allows
these listings to be used by owners of all machines. To this end, wherever possible,
machine-dependent commands have been omitted and the listings kept simple.

There is no doubt, however, that nearly all of the programs listed would be
improved by graphics and/or some special commands. These must be left to the skill
and requirements of individual owners. There is just no way that a single book can
cater for all.

The few machine-dependent commands are restricted to the CHR$(X) variety,
where the X executes non-printable functions at the terminal. A list of these follows;
simply substitute with whatever executes the same function on your own machine.
If you do not have a particular function available, merely omitting the command
will generally have no effect on the program.

CHR$(5) Cursor off
CHR$(6) Erase to end of line
CHR$(7) Bell

CHR$(8) Cursor left
CHR$(9) Cursor right
CHR$(10) Cursor down
CHR$(11) Cursor up
CHR$(12) Change page
CHR$(13) Carriage return
CHR$(14) Scrolling mode
CHR$(15) Not applicable
CHR$(16) Home up
CHR$(17) Tape reader on
CHR#$(18) Tape punch on
CHR$(19) Tape reader off
CHR#$(20) Tape punch off
CHR#$(21) Cursor on
CHR$(22) Erase to end of frame
CHR$(23) Not applicable
CHR#$(24) Not applicable
CHR$(25) Initialise terminal
CHR$(26) Page mode
CHR$(27) Cursor steady
CHR$(28) Cursor blink
CHR$(29) Reverse screen

Page/scroll
In page mode, when the cursor reaches the end of the bottom line, it continues
printing at the beginning of the top line. Note that (at least on my machine) it does

not automatically clear the screen; a separate command must be sent to do this,

4

which is a useful feature of one merely wishes to alter a few characters here and
there. Similarly with the ‘Home up’ command, which merely flies the cursor to the
top-left position without clearing the screen.

Paging is useful for automated semi-graphics; that is, for moving about printable
characters. This is done with the program ‘Slide’ for instance. With the cursor
switched off and the terminal in the page mode, the printable characters appear to
slide about the screen. This is done by printing a string such as (e.g.) “ABCDE"".
If a carriage-return is now executed and the string “A BC D E’’ printed, the
letter C will appear to move to the left — apparently without volition. This is the
basis of many so-called graphics programs, including those run on some best-selling
computers.

In scrolling mode, when the cursor reaches the end of the bottom line, the entire
screen scrolls up one line, thus presenting a fresh clean line at the bottom upon
which the cursor continues to print. The effect is like a continuous roll of paper
issuing from a teletype.

Whether you like scrolling and use it a lot will depend to some extent upon the
baud rate of your terminal. If it is very slow (say at 300 baud or less), the scrolling
rate is just about at comfortable reading speed. If it is very fast (say at over 1200
baud), the screen fills in one or two seconds, after which the program pauses for you
to read. In between those extremes, the scrolling effect can be very irritating indeed
and you will not use scrolling very often.

Scrolling is used a lot in these programs because of the very high baud rate of my
terminal. If you don’t like it, it should be a simple matter to substitute page mode,
or whatever takes your fancy — including graphics.

Sum-difference (0.5 K)

This, the simplest program in the book, will easily fit in any computer that supports
BASIC, and is readily translatable into machine code for tiny computers that do
not. It will even translate for programmable calculators, providing the text is
omitted.

The game is of course suitable only for children. It is extremely simple, but unless
you are in the secret, finding the two hidden numbers can be frustrating.

For budding programmers, it is interesting to observe that a PRINT statement
can include computation, as in lines 110, 120 and 290. There is no need to do the
calculation before printing out the answer, and the method shown can save
program and variable space. Of course, if you want to do something else with the
result of a calculation, it is better to save the answer rather than doing the calculation
twice, but in this program it does not matter.

Notice also that the program has no exit, but will continue to loop forever,
continuously posing problems until power is turned off, or until the user resets the
machine. If you like, line 300 can be rewritten to ask the user if he wants to play
again:

300 PRINT : PRINT “Type 1 to play again’’;

310 INPUT A
320 IF A =1THEN 10
330 END

If you have string facility and also use multiple statement lines, the above could be
reduced to only one line:

300 PRINT : INPUT ‘‘Play again (Y-N)’, A$:IF A$=°Y”’ THEN 10

You will see lots of similar examples later in this book.

Lines 30 and 40 are interesting. Line 120 demands that X shall always be greater
than Y, yet lines 10 and 20 do not guarantee this when they generate the two secret
numbers. Therefore line 30 checks which is the greater and, if necessary, line 40
turns the two numbers around, putting the larger in X and the smaller in Y.

List of variables

X first secret number Y1 wuser’s guess at second number

Y second secret number N ongoing count of number of problems set
Z temporary holding store R ongoing count of number of problems
X1 wuser’s guess at first number solved

6

Program listing

9010 X=INT(RND(@)*20)+1
@020 Y=INT(RND(0)*20)+1
§030 IF X>=Y THEN 50
0040 Z=X:X=Y:Y=Z

@050 N=N+1

$100 PRINT "I AM THINKING OF TWO NUMBERS BETWEEN 1 AND 20"
@11¢ PRINT "THEIR SUM IS ";X+Y

@120 PRINT "THEIR DIFFERENCE IS ";X-Y

§130 PRINT "WHAT ARE THE TWO NUMBERS?"

§140¢ INPUT X1:INPUT Y1

#1560 IF X1<>X THEN 200

$160 IF Y1<>Y THEN 200

@17¢ PRINT "RIGHT!"

2189 R=R+1

#1980 GOTO 290

§200 IF X1<>Y THEN 250

@210 IF Yl=X THEN 170

§250 PRINT "SORRY - YOU'RE WRONG."

$260 PRINT "THE NUMBERS WERE ";X;" AND ";Y
@290 PRINT "YOU ARE BATTING AT ";R*100/N;"s"
@300 PRINT :PRINT"LET'S PLAY AGAIN!":GOTO 10

A sample run

I AM THINKING OF TWO NUMEERS BETWEEN 1 AND 20

THEIR SUM IS 13

THEIR DIFFERENCE IS S

WHAT ARE THE TWO NUMBERS?

g

. hat

SORRY - YOU'RE WRONG. W m

THE NUMBERS WERE 9 AND 4 Sagpd | QM told (stake las '
YOU ARE BATTING AT @ ¥ mesta

LET’'S FLAY AGAIN!

I AM THINKING OF TWO NUMBERS BETWEEN 1 AND 20
THEIR SUM IS 1@

THEIR DIFFERENCE IS 2

WHAT ARE THE TWO NUMEBERS?

b

4

RIGHT!

YOU ARE BATTING AT 50 ¥%

LET’'S PLAY AGAIN!

I AM THINKING OF TWO NUMBERS BETWEEN 1 AND 20
THEIR SUM IS 2@

THEIR DIFFERENCE IS 2

WHAT ARE THE TWO NUMBERS?

11 ek baCk
RIEHE| can | B 0% 2
YOU ARE BATTING AT 66.bb66666 % 413:3 o \©O °

LET'S FLAY AGAIN!

I AM THINKING OF TWO NUMBERS BETWEEN 1 AND 26
THEIR SUM IS 10

THEIR DIFFERENCE IS 6

Balancing act (1.2 K)

Although this is another nice simple little game suitable for any computer or
programmable calculator, it is not all that easy to play well, and learners can be
expected to make wild swings from side to side — in fact, just like the real situation.
Children especially love this game.

If or when you get good at it, put a time-delay in the reaction loop:

210 W=W-D:D=P:NEXTM

The wobble (W) is then affected by the delayed reaction (D), and the current
reaction (P) is stored for next time. This will make your reaction take effect always
one move behind — that will take the starch out of anybody!

Line 130 is particularly interesting. The RND function returns a random
number in the range 0 to .99999 and the effect of squaring this is to return most
numbers in the lower end of the range, with occasional forays into the higher end.
Multiplying by 8 and subtracting 4 means that the complete statement will now
return a random number in the range —3 to + 3, thus causing a wobble of the cue to
left or right.

List of variables

Q$ general input string
number of moves aimed at
tab position

current move

wobble left or right
player’s adjustment

~Ega>

Program listing

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
2110
0120
0130
01490
0150
0160
0170
0180
9190
0210
0220
0230
0240
9250
0500
9000
9010
9620
90390
9040
9050
9060
9070
9080
9090

PRINT TAB(10Q); "BALANCING ACT"

PRINT TAB(l0);"============="

PRINT :PRINT

INPUT "DO YOU WANT INSTRUCTIONS",Q$

IF LEFT$(Q$,1)="Y" THEN GOSUB 9000

PRINT "FOR HOW MANY MOVES DO YOU THINK YOU CAN BALANCE THE ";
INPUT "BILLIARD CUE",A

REM - BALANCE THE CUE

T=10:FOR X=1 TO 1@:PRINT TAB(T);"*":NEXT X

REM — GAME LOOP **kkkkkkkkkhhkhkhhhkkrhhkhhrkkhkhkk

FOR M=1 TO A

IF W<@ THEN W=W-.5 MAKE (T

IF W=0 THEN X=RND:W=INT (X*X*8-4)

IF W>@ THEN W=W+.5 FauL FASTER

T=T+W:REM - INCREASE WOBBLE
IF T<=0 THEN 500
IF T>=20 THEN 500

PRINT TAB(T);"*";TAB(30); TRY A~D
INPUT P:P=P-5 «
W=W-P:NEXT M Co RRECT

PRINT :PRINT "CONGRATULATIONS - YOU DID IT!"

PRINT :INPUT "PLAY AGAIN (Y-N)",0$

IF Q$="Y" THEN 60

END

PRINT :PRINT "BOO! YOU DROPPED IT!":GOTO 230

PRINT "IN THIS GAME YOU HAVE TO BALANCE A BILLIARD CUE ";
PRINT "ON YOUR FOREHEAD. 1IF IT STARTS TO WOBBLE TO THE ";
PRINT "LEFT, THEN YOU OF COURSE MUST ALSO GO TO THE LEFT ";
PRINT "SO AS TO GET YOURSELF UNDER THE CENTRE OF GRAVITY."
PRINT "IF IT GOES RIGHT, YOU MUST GO RIGHT."

PRINT "YOU USE THE NUMERICAL KEYS. THE NUMBER 5 IS CENTRAL, ";
PRINT "WITH THE NUMBERS 1-4 TO THE LEFT AND THE NUMBERS 6-9 ";
PRINT "TO THE RIGHT."

INPUT " PRESS RETURN......",Q$

RETURN

T BLOGGS FRUMEReR |

s =

APecES

A sample run

DO YOU WANT INSTRUCTIONS? N
FOR HOW MANY MOVES DO YOU THINK YOU CAN BALANCE
THE BILLIARD CUE? 30

Mok ok ok K o kK ok K

> Wk ok M K

&) START wiTH THE
CUE UP STRAIGHT

Thes e
numbers
dre m

adjustmcnfs

nearly lost it!

WabUNCcoOUMWNWUACGTCTUARALDUNUNCODENWNW

CONGRATULATIONS - YOU DID IT!

PLAY AGAIN? NO

READY

10

| ‘lf‘

3
Z

I
)

Pakistani pool (2 K)

As its name implies, this game originated in Pakistan. Instructions are included in
the listing, but these can be omitted if desired, or if you can’t quite fit the program
into your machine. The same thing applies to the programs throughout this book —
if you need to pare because your memory size is too small, take out the instructions
first. (You can always keep them handy in a little booklet, or refer to this volume.)

If you still can’t get a program to fit, take out all the REM statements (for
REMARK), which are only in there to make the listing easier for you — the human
— to follow. The computer doesn’t need them! If you make a habit of this, you will
have to be careful, however: make sure that another statement line somewhere
doesn’t cause a jump to the line that you take out. I have tried to avoid jumping to
REM statements, but human nature being what it is, I could have slipped up.

Another way of saving memory is by multiple-statement lines, if your machine
allows this. For example, lines 100 and 110 could go on one line, as could lines 120
and 130:

100 PRINT : PRINT “PLEASE TYPE YOUR NAMES” : P=1
120 INPUT P$(P) : IF P$(P)="""" THEN 150

I'have not done this throughout the listing, as it tends to make the print rather dense
to read.

Line 40 is a handy trick. In response to line 30, users may type ‘NO’ or ‘YES’, or
just Nor Y. Line 40 looks only at the first letter of the input and acts accordingly, so
even ‘YES PLEASE’ is acceptable. The program does not abort and user tension is
avoided.

Line 130 avoids the necessity to input the number of players beforehand —
names are simply typed in as long as you like and, when no more are to be entered,
an extra tap on the RETURN key moves the program on.

List of variables

O$ general response input

P total number of players
P$(X) names of individual players

C(X) array containing each player’s cash in hand

11

P(X) array of each player’s bet
X general counting variable
C total cash in the pool

H number of heads thrown
T

number of tails thrown

Program listing

¢@1¢ PRINT "PAKISTANI POOL"

0020 PRINT "———=—————————e .

903@ INPUT "DO YOU WANT INSTRUCTIONS",Q$

0949 IF LEFTS$(Q$,1)="N" THEN 100

9050 PRINT "ON EACH ROUND, THE COMPUTER WILL SPIN 16 COINS."
9P60 PRINT "THE PLAYERS BET ON THE NUMBER OF HEADS THAT THERE"
9070 PRINT "WILL BE. EACH PUTS $1 IN THE POOL AND THE PERSON"
9980 PRINT "GUESSING CORRECTLY SCOOPS THE POOL. IF NO-ONE"
#0990 PRINT "GUESSES, THE CASH IN THE POOL GOES FORWARD TO THE "
9095 PRINT "NEXT ROUND."

#100¢ PRINT :PRINT "PLEASE TYPE YOUR NAMES"

2110 p=1

9120 INPUT P$(P)

130 IF P$(P)="" THEN 150

9140 C(P)=20:P=P+1:GOTO 120

#9150 PRINT "EACH PLAYER STARTS WITH $20"

9160 P=pP-1

#1790 FOR X=1 TO P

@180 PRINT P$(X);:INPUT " - YOUR GUESS",P(X)

#1909 IF X=1 THEN 240

#2080 FOR Y=1 TO X-1

0219 IF P(X)<>P(Y) THEN 23¢

9220 PRINT "THAT BET HAS BEEN TAKEN":GOTO 180

#0230 NEXT Y

#2409 C(X)=C(X)-1:C=C+1:NEXT X

9250 PRINT

9260 PRINT "HERE WE GO"

9270 PRINT :H=0:T=0

#28¢ FOR X=1 TO 16

#2990 IF RND(9)>.5 THEN 310

9300 H=H+1:PRINT "H ";:GOTO 320

9310 T=T+1:PRINT "T ";

#3260 NEXT X

#3380 REM - CHECK BETS

0348 FOR X=1 TO P

#3580 IF P(X)<>H THEN 400

9355 PRINT :PRINT

@360 PRINT P$(X);" WINS! HE/SHE NOW HAS ";

#3708 C(X)=C(X)+C:C=0

@38@ PRINT "$";C(X)

#3980 GOTO 420

0400 NEXT X:PRINT

9410 PRINT H;"HEADS - NOBODY WINS. CASH IN POOL IS NOW $";C
9420 PRINT "CASH STATE -"

#4300 FOR X=1 TO P

0440 PRINT P$(X);" - ";C(X)

@450 NEXT X

#4680 FOR X=1 TO P

9470 IF C(X)>@ THEN 500

0480 PRINT "GAME ENDS. PLAYER(S) HAVE NO CASH"

#4909 END

9500 NEXT X:GOTO 170

12

