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PREFACE

In the best books on the theory of elasticity the investigation of
three-dimensional boundary value problems has been so far limited to
bodies of special shape (a half-space, a sphere, some cases of axially
symmetrical bodies and so ofi). The greatest attention has been given to
static problems, less attentiqh to oscillation problems and still less to
problems of general dynamics. Such a situation might be well expected -
it reflects the historical background of the theory of elasticity which
during the entire preceding period was concentrated on bodies of parti-
cular profiles and was above all interested in problems of static equili-
brium. :

It would be wrong to attribute this situation only to the importance of
the above-mentioned problems for technology and engineering. The true
reason is that the methods of classical elasticity were inadequate for
developing a rigorous and sufficiently complete theory of three-dimen-
sional boundary value problems.

Unlike the three-dimensional problems, the theory of the plane prob-
lem worked out mainly by the classical methods (the theory of analytic
functions, Fredholm's theory of integral equations and, later, the theory
of one-dimensional singular integral equations) has been extensively
developed and found its perfect expression' in I.N. Muskhelishvili’s book
“Some Basic Problems of the Mathematical Theory of Elasticity” the
first edition of which appeared in 1933.

The situation is currently changing. The theory of three-dimensional
problems may now be worked out by a variety of means. We shall just
mention two of the possibilities: on the one hand, it is the modern theory
of generalized solutions of differential equations (the method of Hilbert
spaces, variational methods), on the other hand - the theory of multi-
dimensional singular potentials and smgular integral equations.

The first trend - based on the ideas of the modern functional analysis
which are novel to the classical mechanics - is characterized by great
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XViii - PREFACE

- generality involving the case of variable coefficients and boundary
manifolds of the general type. Owing to such generality, it may be
employed in the first place for proving theorems on the existence of
non-classical solutions, requiring additional, sometimes essential,
restrictions when used for classical solutions.

A fine, though concise, treatment of these'topics may be found in G.
Fichera’s papers ‘“Existence Theorems in Elasticity” and “Boundary
Value Problems of Elasticity with Unilateral Constraints”, Handbuch
der Physik, VIa/2, Springer Verlag, 1972, and in C. Dafermos’ paper “‘On
the Existence of Asymptotic Stability of Solutions to the Equations of
Thermoelasticity™, Arch. Rat. Mech. Anal. 29, 4, 1968.

The second trend based on the rapidly developing theory of singular
integrals and integral equations is a direct extension of the concepts of
the theory of potentials and Fredholm equations which are, as known,
the prevailing concepts of the classical mechanics. This approach, being
not so general as the first one, allows to investigate in detail cases most
important for the theory and application, retaining the efficiency of the
methods of the classical mechanics of continua.

The present book has adopted the second trend. It is an attempt to

develop - apparently for the first time with adequate completeness and

“at the modern level of mathematical rigour ~ the general theory of
three-dimensional problems of statics, oscillation and dynamics for
linear equations with constant and piecewise-constant coefficients of
classical elasticity, thermoelasticity and couple-stress, elasticity.

Much space in the book is assigned to general problems (existence and
uniqueness theorems, an analysis of differential properties of solutions,
the continuous dependence on the data of a problem etc.). A great deal
of attention is also given to questions of the actual construction of
solutions in a form allowing to expiess them numerically under very
general conditions.

With this end in view the solutions are represented as generalized
Fourier series to construct which there is no need to know the eigen-
functions and the eigenvalues of any auxiliary boundary value problems.
New representations of solutions by quadratures have been found for
some particular cases. '

We think that the simple construction of solutions and the represen-
tation of elementary structures by explicit invertible operators, together
with a detailed analysi‘s of the smoothness of solutions, may serve in the
conditions of modern_computing facilities as the basis for obtaining
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convenient algorithms of numerical computations and for estimating
approximations. | )

The book reproduces the monograph of the same authors published by
the Tbilisi University Press in 1968. It was favourably received by
readers and sold out within a short time. In 1971 the first edmon was
awarded the State Prize of the Georgian SSR.

When a second edition was called for, the book was extensively
revised and enlarged. To make the book accessible to a wider circle of
people the authors rewrote nearly all the chapters, simplified a number
of proofs, corrected the noted errata.

The chapters of the book are divided into sections, the sections into

" articles; each section has its own numeration of formulas; the formula
number is denoted by two figures enclosed in brackets; for example,
(5.9) means the ninth formula in the fifth section. When reference is
made to a formula, the number of a chapter is added to the number of
the formula; thus, (VIII, 3.6) means the sixth formula in the third section
of the eighth chapter. However, if reference is made to/a formula within
a given chapter, the chapter number is omitted.

Theorems, lemmas, definitions and notes are numerated in the same
manner but without brackets. Theorem V, 2.10 therefore means the
tenth theorem in the second section of the fifth chapter. Again, if
reference is made within a given chapter, the chapter number is left out.
All the chapters, except the first one, are supplemented with problems
some of which may be used as a subject of independent research.

The bibliography consists of those titles which were available to the
authors at the time of writing the book. It does not claim to bibliographic
irreproachability and does not include the books published after 1972.

Thilisi The Authors
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