(1, BRED): |
;;Age e 4; 1 (24; . : \‘
. cursor(i, ’

|) 1

?:f(n == Q") {

o3 0
f

clreocl()

 ;,,,8 atl{‘l hpas, ++i)

showop (&apt mns[il 5 F 9’9 FRACK,

cursor(2
mascr(i, L.
' fmtﬁi “CMRJM ’
tnuppur(getcn

exit(8);
masc "r‘(lgl' |

2

8860095

o)

(

Debugging C

Robert Ward

Que™ Corporation
Indianapolis, Indiana

MU0

E8860995

JiE

Debugging C. Copyright © 1986 by Que Corporation.

All rights reserved. Printed in the United States of America. No part
of this book may be used or reproduced in any form or by any
means, or stored in a database or retrieval system, without prior
written permission of the publisher exceptin the case of brief quo-
tations embodied in critical articles and reviews. Making copies of
any part of this book for any purpose other than your own personal
use is a violation of United States copyright laws. For information,
address Que Corporation, P.O. Box 50507, Indianapolis, IN 46250.

Library of Congress Catalog No.: LC 86-61152
ISBN 0-88022-261-1

This book is sold as is, without warranty of any kind, either express
or implied, respecting the contents of this book, including but not
limited to implied warranties for the book’s quality, performance,
merchantability, or fitness for any particular purpose. Neither Que
Corporation nor its dealers or distributors shall be liable to the pur-
chaser or any other person or entity with respect to any liability,
loss, or damage caused or alleged to be caused directly or indi-
rectly by this book.

90 89 88 87 86 8 76 5 4 3 21

Interpretation of the printing code: the rightmost double-digit num-
ber is the year of the book’s printing; the rightmost single-digit
number, the number of the book’s printing. For example, a printing
code of 87-4 shows that the fourth printing of this book occurred
in 1987.

About the Author

Robert Ward ’

A digital design engineer, Robert Ward devéT?S’ﬁgﬁﬁ:roprocessor-
based communications equipment for an international marketer of
computer accessories. He has developed programs ranging from
dedicated real-time control programs for single-chip microcon-
trollers to small compilers for large UNIX hosts to massive vertical
applications for CP/M hosts. Ward teaches computer science at
McPherson College and is president of Dedicated Micro-Systems,
Inc.

His quest for solutions to the challenges of programminginCona
personal computer led to his role as international coordinator of
the C User’s Group. Ward’s interests include programming lan-
guages, computer architecture, and artificial intelligence.

iii

Product Director
Chris DeVoney

Editorial Director
David F. Noble, Ph.D.

Managing Editor
Gregory Croy

Editors
Kathleen A. Johanningsmeier
Gail S. Burlakoff

Technical Editor
Paul Wilt

Production Foreman
Dennis Sheehan

Production

Joe Ramon
Mae Louise Shinault

Peter Tocco

Lynne Tone

Composed in Megaron and Que Digital

by Que Corporation

Cover designed by
Listenberger Design Associates

Acknowledgments

There are special people who have contributed significantly to this
book. | offer my heartfelt thanks to the following persons:

Chris DeVoney and the technical staff at Que, who have enlight-
ened me about several of my programming parochialisms.

Que’s editors, who enhanced the consistency and readability of
the manuscripts and brought the entire work to press in a remark-
ably short time.

David Raanan, of AT&T Information Systems, who reviewed the
discussion of sdb in Chapter 9.

The good people at C.L. Publications, who created a forum where
the main thesis of this book could be tested.

Jack Purdum of EcoSoft, who offered the special encouragement
and advocacy that permitted me to take this work from an idea to
a published book.

Xi

Trademark
Acknowledgments

Que Corporation has made every attempt to supply trademark in-
formation about company names, products, and services men-
tioned in this book. Trademarks indicated below were derived from
various sources. Que Corporation cannot attest to the accuracy of
this information.

Ashton-Tate is a registered trademark of Ashton-Tate Company.
CodeView is a trademark of Microsoft Corporation.

CP/M is a registered trademark of Digital Research, Inc.

C-terp is a trademark of Gimpel Software.

dBASE Il is a registered trademark of Ashton-Tate Company.
DDT is a trademark of Digital Research, Inc.

Eco-C88 and Eco-C Compiler are trademarks of Ecosoft, Inc.
Interactive-C is a trademark of IMPACC Associates, Inc.

IBM is a registered trademark of International Business Machines
Corporation.

Lattice is a registered trademark of Lattice, Inc.

Microsoft and MS-DOS are registered trademarks of Microsoft
Corporation.

PC-Lint is a trademark of Gimpel Software.

UNIX is a registered trademark of AT&T. AT&T is a registered
trademark of American Telephone & Telegraph.

ZSID is a trademark of Digital Research, Inc.
Z80 is a registered trademark of Zilog, Inc.

Xiii

More Computer Knowledge from Que

LOTUS
SOFTWARE
TITLES

DATABASE TITLES

APPLICATIONS
SOFTWARE
TITLES

WORD-PROCESSING
TITLES

IBM TITLES

COMPUTER
SYSTEMS
TITLES

PROGRAMMING
AND TECHNICAL
TITLES

1-2-3f0r BUSINESS . et eteeeeeeeeeeeneeenaeeanceanesanaeansonnnns $18.95
1-2-3 Business Formula Handbook..........ccceiiiiiiiiiiiiiiiinnnnn 19.95
1=2:-3 Command LANGUAGE s s+ s s1s:s si01a eiaa aais sias a1aie winis sisis s.6%6 s757e & sl 5 376 19.95
1-2-8 Financial MACIOS: « s s sses s 55 58 5mis 5,55 5578 60506 8575 & 575 § 578 5 s 5 539 19.95
1-2-3 Macro Library, 2nd Editioncoiiiiiiiiiiiiiiiiiiiiiiiiiiannn 19.95
1-2-3 Tips, Tricks, and Traps, 2nd Edition.......... ...cciiiiiinnn. 19.95
Using 1-2-3,2Nd Editionniiiiiiiiiiiiiiieennenennnannass 21.95
Using 1-2-3 Workbook and Disk, 2nd Editioncccoa.... 29.95
USING SYMPRONY: ors siss srsss s s viae wre oo smiw v 3w s 356,80 & 6 5528 55508 5585 1 23.95
Syimphony: AAVanced TOPICS: s s we s s s wims o s via s 9 & 58 8 558 5 608 5558 5 55 6 516 19.95
Symphony Macros and the Command Language............cccoveu.... 22.95
Symphony Tips, Tricks,and Trapsceeeeeeeeeeeeeeeeeeeeeaceeennns 21.95
dBASE Il Plus Applications Libraryceeeeeeeniinnnnnnnnnnnnnanannn 19.95
dBASE Il Plus Handbook, 2nd Editioncovieiiiiiinnnnnneenennnn 19.95
dBASE lil Advanced Programming .. « . s s s s s sie s ¢ o7 s ae.s a6 & w6 & w0 575 22.95
R:base 5000 Techniques and Applications.......ccceeeeeeennnnnennn.. 19.95
R:base 5000 USeris GUIA « s s s s w566 5158 5516 s50s 556t 05 5 5165 aie 066 mvas asirs mre 19.95
Reflex Tips, Tricks, and Traps . ..ceeeeeeeeeeeeeeeeeeeeeenenaennnnnnas 19.95
USING REfIEX «uutttttiietiiieeiieeneeeeeeeeneeeeeeeeeeeeeeaannnnns 19.95
USING Paraltdox ., o:eis sisere Susrs sisi ¢ 515 5 wiars ‘ssive spevsratsre smdisiassrs sroym seets siive shls stiss oo 19.95
LISING Q) 1A, sustoraios s wisrs sxrs wis 5391 s wiers wise Siars 35sie Siovs Se7s $iars EUSHS STAE BIGTS WIa¥e 318 19.95
EXc6| MaCTO LIDYATY. w5 : vie s 5 s 58 sie w39 s1as sysss svis sisks 5176 51,6 5164 siole 37406 o 19.95
Multiplan Models for BUSINESS .« ss.s sss s 5165 a6 5168 sisie siais a6 61600 siss oo 15.95
USING ADPDIEWOTKS 5 5515 5754 575 » 5156 53015 97666 9948 s o556 55618 ois S300m avave srete ssere e 16.95
Using Dollars and SeNSecciveeiieeenneeenneeeneennneennennnss 16.95
USINGENADIE ..ouuiiiiiiiiiiiiiiiiiiieiieieeenenennennnennnss 19.95
USING EXCEl .ot iittiiiiiet et iieeneiieeenneeenennnseeennneans 19.95
USINGJAVEIIN s s wios sme 51w s5ors sisis w5 50w ssamshorsns siaie 53536 S10i6 S5k Sdha S088 8,346 33 21.95
UISING SINARY & oxx 5 s sreis 550 53616 56515 5355 5008 90816 558 57855 0814 84018 wisis avere avane oreis™e o 22.95
Using DisplayWriteccuiiieiiieeinneeieereneeeeeeenncennsanneas 18.95
Using MicroSoft Wordcinueiiiiiniiiiiiiiiiiiiiiniennnnnenn. 16.95
UsingMultiMateottt ittt ieeeieeneennrennens 18.95
Using the PFS Family: FILE, WRITE, GRAPH, REPORT 14.95
Using WordPerfect, Revised Editionccvvveniineiiinnnnnnnn. 18.95
USING WOrdStar 2000 «: s siss swm sie 555 5 5 6 555 & 556 & 518 5938 6616 6 575 o1 s-evn o o 17.95
Networking IBM PCs: A Practical Guide, 2nd Edition................... 19.95
USINGPC DOS . iiiiiiiiiiiieieeeeeneanencacnncnacsascesascsaannns 21.95
Amiga Programming GuUidecvveinnne ceeennnnneeeeeeeacnnnns 18.95
CP/M Programmer’s Encyclopedia.....coeeeeeieennnnnnnnnnnnnennnns 19.95
Managing Your Hard DiSK « s« e w.e s sis ¢ w70 6 50 6 655 6 556 3 550 6 5365 5000 95606 w0606 5106 o 19.95
MS:-DOS User's QUIAE « : w ¢ 5w s s s o o s w0 s 55906 6006 5586 5660 w0 6 aneis o166 srmus o 19.95
UsingNetWareccoviiiiiiiiiiireineseassessssssecccccoccocnns 24.95
Advanced C: Techniques and Applicationscccceeeieennnnnnnnnn. 21.95
C Programmer's Libraryooeieeeeeeeneeeeoeneececennnncennnanen 21.95
C Programming Guide, 2nd EQItION .. cesswe sosewsswssns svs s s a5 s 19.95
C.Self-Study GUIHE . . s s sw s 565 51 s oms wiws smms 5.6 5105 5766 6is 556 5005 36aié s 16.95
CommON:C FUNCHONS w:s : s:04 0145 516 5165 91616 55515 6516 8566 5565 676.6 01656 o610 mreve oveie 18.95
DebuggingiC.. s s 5 s 6 s 965 s 6:5.6 3as1é unce asiin ssnse ssese exere susce sels srers aisre sisie o 19.95
Turbo Pascal for BASIC Programmerseeeeeeeeeeeeeennnnnennnes 16.95
Turbo Pascal Program Libraryc.ccoeeiiiiiiiiiinennnninnnnnnnns 19.95
Understanding UNIX: A Conceptual GUide......coveveeeeeennnnennenns 19.95
Understanding XENIX: A Conceptual Guide.......ccevveeienennennnnn. 19.95

Que Order Line: 1-800-428-5331
All prices subject to change without notice.

Table of Contents

Introduction
Why a Book on Debugging?ccoeieineienncinnnnnns 1
Debugging Then and DebuggingNow 1
Debugging = Working Programsceeeeeeeeeeen 2
Debugging CisDemandingcceeeeeeeeeeeeiennnnn 3
Who Should Read ThisBoOK?cciviieiiiinennnnn. 4
Chapter SUIVEYccocecctssnssssscsesccnnessssssanss 5
Foundations
Debugging and Scientific Methodt. 8
The Debugging Processcccoevieiiieiinnnnnnnnn. 9
PhaseOne:Testing ...ccoviiiiiiiniiiiiieienennans 10
Phase Two: Stabilization........ccoviiiiiiiennenn.. 10
Phase Three: Localizationccoceiiiieeennennn. 1
Phase Four: Correctionccccceeeeeccacccccccccnes 12
Principles of Proximityc.cceeeeeecccececececccanans 12
Lexical ProxXimityccciseoissscovinsssessessssos 13
Temporal ProXimity .c..ccoeeeecccecncecnascscnecens 14
Referential Proximityccoeieiieiiieiieiinennnn. 15
Debugging Tools and Techniques.......ccevieeeeenan.. 16
RETURN o605 550 winse 5istm womis 90 68 5 538 wip 0550 ot 510 0 918 55 2 17
Program Testing
RecognIZing BUgSisss s sis s oo 0 mss s sieisisis om wso s e w ois 518 19
Lexical EfTOIS « s o e o0 w2 w15 55 616 Sioie sis w788 w30 330 o 576 oy 20
SyntactiC EXTOTS .« o s wem s wis m o oo wa e ose s 579 916 5.0 o5 20
EXSCUNON EITOIS . oo sie wisiooo-simssh ons siaisrass a76.0 65 b w1 018 21
INENEEITOrS «.oce e vnisin sosinssvnsnssunsssasnssosesssss 23
Other YardStCKS: os s sssmvss s siswe v o5 sxsisisreress S/ 24
Some Bugs: Stand St ;.. ve sis « s s s 556 5n s sre e siwvis ws 25
Some Bugs Are InputDependentccovveennnn. 25
Some Bugs Are Code Sensitive.....cccvvveeeeeeennns 26
Some Bugs Are Environment Sensitive 26

Vi

Before Attempting To Localize, Stabilize 27

Testing Strategiescooviiiiiiiiiiiiiinenaiiinnne, 27
How Testing Works. .. covvvviiiinniineiiinaninens 28
Top-DownTesting ...cooviiiiineniiiiiiiinneenenenn 29
Bottom-Up Testing . cccscssssrneesenvecsavesocrannns 33
A Mixed Strategy -« sisvsvsnsnssassuemsnsonsnosmans 35
Selecting TestData.......ccoviiiiiieeiiiiiinnieeannns 37
Keeping Adequate Recordscccoiiiiinnnnne. 39
Hunting versus Verifyingcciiiiiieiiiiiinaninnes 41
RETURN .. iiiiiiiiiiieietetternnneeeceeannnnnnannns 42

Localizing Compile-Time Errors

Compiling: Process and Components................... 45
Syntax Errors: Some All-Purpose Advice................ 49
Forcing More Useful ErrorMessages..........c.ceeveennn. 50
Using Curly Brace Checkers........oovvviiiiiiiiiiinn. 59
Using Lint To AnalyzeSyntaxccoovvviieiieennnn. 62
Isolating Bugs with Tiny Test Programs 66
Using the Preprocessor as a Stand-Alone Program 68
Understanding CSyntaxc.oviiiiiiiiiiiennnennns 69

UsingHand Parsing.......cceiiiiennineinnneennnens 70

Using a Syntax-Directed Editorcooitn 70
BETURN 1.« o0 o o0 06 0 bca auo 0608 508 @ 605 808 51618 658 18 065 06 5 8450 916 s 71

Conventional Trace Methods

Control-Flow Tracing . .. coeveveeerrnnccnncecnocscasans 74
Instrumenting If Statementscoiiiiiiiiiiien 75
TracingControl Valuescoovviiiiiiiiiniennnnns 75
InStrumenting LOOPS. «:s vic ass siaravis s aie wors w6 s w1 616 o70 w10 76
Instrumenting Breaks and Continuescceouun. 77
Instrumenting Case Statements........ccoeveeiinennen 78
Methodical Instrumentation, Not

MysticalInsightoviiiiiiiiiiieiiiienirineennes 81
Instrumenting Functionscoeiiiiiiiiiinninnnnns 82

Data-=FIOW Trating « s s s s s a0 o6 a:6's 1w 0 o500 15 6. 656 w6 5.8 616 83
SelectingVariablesccoiiiiiiiiiiiiiiiiiiennn. 84
USIRG SNAPSNOS: c.c s 55 5.5 5558 30008 5965.0:5 5 535 sesvss 550 806 w656 .. 84
Tracing Local Variablescceivveeiieeeennnennnn 87

RETURN ... iiiiiiiiiiieeiierennsncsoccssanssnnannns 92

Managing Trace Facilities

Controlling Trace Outputvveeneennennn. .. 94
Making Control More Convenient.................... 95
Setting the Control Variable 96
Temporal Switchesccoviivivnninnnn... 96

Hard-Wired Changescoovveenenn.... 97
Counting Mile Postsoovevveenunnnnnnn.n.. 97
Function-by-Function 99

S Tali 1 T4 R ey SO 102
Practical Variations0........ « 104
TotheReadercooviiiiiinnnnnnininnn.. 104
Managing Source Code.........ooovuereunrnnnennnn... 105
RETURNcovvvvvviinnnennnnne e A B oin k., 107

Why Is Debugging C Difficult?

Strong Types and Error Detection 110
Orthogonality and Error Detection...................... 114
General Impact of Structural Differences 115
The Virtual Machine and Our Expectations 116
Bugs that Attack the Virtual Machine 118
Pointer Bugsandthe Stack 118
Out-of-Range Subscripts...........oovevnvnnnn. .. 122
VarIAONS 4y s w55 6 0w b sre o w8 6550 08 55 s e 123
Uninitialized Pointersc.ovuuunon. .. 124
Pointers that Writeon Code....................... 128
RETURN 0 35 57510 54 i/t 5 w10 a0 0 500 808 55 0 0 o m me m 130

Stabilizing Pointer Bugs

The Importance of Unallocated Memory 134
The Benefits of Initialized Memory...................... 134
Initializing Unallocated Memory
withaDebug Toolvvuvivinein e, 135
Initializing Memory UsingDDT 136
Initializing Memory Using MS-DOS’s DEBUG 137
GeneratingaloadMapcoovuenn.. .. 138
8086 Address Notationcovvnvnnnn... 141
Identifying Globals.............covvvueinnnninn.. 143
USINg DEBUGE < & o020 L0 v s o5 w08 5685 55 5155 o e m e e o s s 144
Exploring with DEBUGccvvvevninnnnnnnn., 146
Wordsof Cautionooeovvvevnninnnnnnn., 147

vii

viii

Building a Memory-Initialization Function 147
Adding a Special Initialization Program

tothelnvocationSequence......c.coveeieeeennecencnns 149
MS-DOS Initialization Programsc.cceeeeeeeenens 149
Special Loaders.....covieieeeeraneeacaccaaccccananns 152
Initializing Local Variables..........ccoeeiiiiiiinaaan. 153
AccessingtheStackcoeiiiiiiiiiiiiiiiiinnn, 153
AutomatingLocal Traces......cceeeeeeeiieiiiinieannn. 155
RETURNcoceeecenceascsasssonsassansoaascsacsss 159

Special Trace Techniques

Monitoring the Virtual Machineccoeeeeee. 161
Checksumson CodeSpace.......ccveeennnneannnnns 162
ChecksumsunderCP/M.....covviiieniiiennnnne. 164
Problems with CP/M Checksums 166
Checksums under MS-DOSccceiievnnnn... 166
Managing Checksumsccoiieiiieennenn 167
StackWalk-Backccvecieeeeceocecencansacoens 167
ASampleWalk-Backcccvvviiiiiiiieaneenn. 169

A Pointer Bug that Writesonthe Stack 173
Interpreting the Stack-Trace Detail 179
Return AddresSsescovveveenernnenncaneennns 180

The Stack Address and the Frame Pointer........ 183
Machine-Level Tracingcceeiieeeeeeiinneeeennnn 183
Trace Preparationccceeeeeiiiieenieenncecnns 184
Displaying the Code for a Specific Function........... 186
Tracing Executioncccceeerececnccccccccsncnns 191
Monitoring Local Variables with DEBUG.............. 195
RETURN. . & 5.5 56 5 6% 556 m 65w 548 5 516 550 o s, 576,676 8 878 9791w ot st 0 aswiana 208

Source-Level Debuggers

sdb: UNIX’s Symbolic Debugging Program 212
USING STUD & s 506,00 6.5 516 51076 10 i0ly ol ois o orn win miwie sis sies o1 213
Command Format... <. us ss slas s o6 o 5 w5 5 a0 510 5 018 576 213
Function and Variable Locatorscceveeueene 214
Other Locatorsccceeeieeeecroeecscesscenncones 216

Commands that Display Code.....cceeveevunnnnnns 216
Commands that Display Variables 222
Commands that Manipulate Breakpoints 229
Commands that Control Execution 235
Direct Function Evaluationcoocieveeenns 236

The MonitorCommand..........cceeeeeennnnnn.. 237

The Stack Traceback Command 237
sdb Application: Postmortemoii... .. 237
sdb Application: Locating Pointer
Bugs that Writeon Globalscco...... 239
sdb Application: Locating Pointer Bugs that
VWINE O LOGEIB . 5: ¢ wsis w55 5.5 5 6 6 0us e w soivon 965 wrew w13 w18 240
sdb Application: Locating Pointer Bugs
that Destroy Return Addresses 241
TestingModulescoovviieenunnnnnn... 250
Caution ...t e 251
SADWEAKNESSOS. « s v sixonssnsoncnnennasssssenssns 251
Other UNIX Debugging AidS........vuvueeenunnnnn... 251
CodeView: Microsoft's Source-Level Debugger........... 252
Userinterfacecoooiiiiiiininninnnnnnn... 253
Expression Evaluation..............coouuuuunno.. .. 256
WatchWindowsoooiiiiinininnnnnnn... 256
CodeView Weaknesses.oueueuenenennnnn... 259
FRE IR s o i .0 k3 S g e B 5 s e 260

10 Interpreters and Integrated

Environments
Edit-Compile-Link Costscooveuennrnnnnnnnnn. .. 263
Interpretation versus Compilation 265
Controlling Debugging Facilities 265
An Overview of C-terpcovviiieiinnnnninnn. . 266
C-terp Debugging Functionso.ouo... 267
Thetrace() Functionoouuueunnnnin ... 267
The dumpv() Functionoooovnin. ... 27
The check() Functionooooii. ... 272
The breakpt() Function........................... 274
DebugModecoocviniiiiiiiiii i, 274
(DIANSPIAY 1.+ s o o 55 505 5 6.6 wrn s 30 3 i 8 1 55 5 274
TrBCEDACK & ox 5505 555 0.0 0rn o vim e w3508 0516 510w wm mee mrs 275
(N/n)ext-Stepovuiiuiiiiiiiii i, 275
(S/s)ide-Step...ouueeniiin i 275
Continueviiiiiiii i 275
Restore, Flip, Window, and Edit...................... 276
USING C-BOP ve s ewnsvininnseonsssnnsssnsessenismmm o s 276
Selecting Breakpoints by Function Name........... 278
Finding Pointers that Writeon Data 280

11

moOOm>

Building a Watch Function........................ 281

Bottom-up Testingwith C-terp 282
RETURN ..ottt c et 283
Conclusion
RoTo] (] gTe I = 7= Vo] 285

The Formal Framework.........ccvviiininnnnnnnn.. 286
Universal Techniquescccovviiiieeennnnnn. 286
C’'sUniqueProblemscoviiiiiiiinnnennnnn.. 286
Arcane TriCKS «.ouvviii ittt it iiineenennnnn, 286
Sophisticated Systemsciiiiiiiiiiieinan.. 286
A Curious State of Affairsovvvniiieeenennnnn... 287
A Challenge to CompilerVendorsccoovvunn.... 287
A Challengetothe Reader............covvvvvvnvnnnn... 288
Resourcelist................................... 289
A Full-Featured Debugging System 203
Assembly Language Functions............. 319
APoorMan’sCtrace.......................... 323
sdb Command Summary..................... 337
Bibliography 34
Index ... 343

Introduction

Why a Book on Debugging?

To write programs that work, you must know how to debug. It’s that
simple. In fact, if you produce working programs, you will spend at
least half your time debugging.

To write programs that work, you must know also how to define
problems (systems analysis), how to design solutions (algorithms
and software engineering), and how to code in your chosen pro-
gramming language (syntax and good practice). There are
hundreds of books written on these subjects.

Isn’tit strange that there are no books on debugging? | think so. Al
programmers do it, but nobody wants to talk about it and | think
that's a mistake. First, you canimprove your debugging skills. Like
design skills, debugging skills evolve from critical analysis and ex-
posure to new techniques and ideas. Second, you must improve
your debugging skills. Good debugging skills are requisite to suc-
cessful programming. To grow as a programmer and to tackle in-
creasingly challenging assignments, your ability to debug also
must grow. Because you program in C, you'll face peculiar debug-
ging problems that demand enhanced debugging skills.

Debugging Then and
Debugging Now

When | began programming in 1969, the teaching language was
Fortran IV. A well-designed program was one that got the right an-
swer. Attitudes about program design have changed since then.
Today, by means of such carefully designed teaching languages

2 DEBUGGING C

as Pascal and Logo, beginning students are introduced early to
modular design. But, when | consider how | learned to debug, my
introduction to programming seems rigorously structured by com-
parison. Except for a vague admonition to “use trace statements to
find any problems,” | don’t remember any classroom advice about
how to debug. Sadly, that situation hasn’t changed much.

The popular introductory Pascal programming texts (Oh! Pascall,
by Doug Cooper and Michael Clancy; Introduction to Pascal and
Structured Design, by Nell Dale and David Orshalick; and An In-
troduction to Programming and Problem Solving with Pascal, 2nd
Edition, by G. Michael Schneider) include debugging tips—usually
at the end of each chapter. The Clancy and Cooper sections are
called “debugging and anti-bugging.” | suggest that a more pre-
cise title might be “anti-bugging and anti-bugging.” Except for the
all-purpose admonition to include trace statements, the book sec-
tions cover defensive programming strategies, rather than debug-
ging strategies. The authors nurture a belief that either good
programmers won't have bugs or, if they do, programmers know
intuitively how to find bugs.

Until | started teaching, | assumed that good debugging skills were
a natural outgrowth of good design skills. Not so. A bright student
may intuitively decompose a problem into beautifully coherent,
cohesive, functional modules. That same student may not be able
to find the most trivial syntax errors, let alone discover subtle run-
time bugs. Equally bright students turn in working designs that lit-
erally defy analysis. While | don’t believe that we learn debugging
by studying design, | do believe that we can learn efficient
debugging.

We can develop a methodological model that directs our efforts to-
ward more productive searches. We can acquire heuristic knowl-
edge (a kind of folk wisdom) about where to look first. We can be
deliberately sensitive to the different variables and observable
phenomena in different environments. We can become expert at
selecting and using appropriate tools. And, through critical analy-
sis of our attempts to find “worthy” bugs, we can learn from our
own mistakes.

Debugging = Working Programs

The simple truth is that programs seldom run right the first time. As
I pointed out, debugging accounts for at least half of most develop-

INTRODUCTION 3

ment project time. Careful, disciplined design and coding won’t
eliminate the need for debugging; good design and coding simply
make efficient debugging possible.

There is no technological relief on the horizon. The design/debug
effort ratio remains fairly constant across all language classes.
Neither better design nor better languages will eliminate debug-
ging. Although debugging may change shape—we may someday
find ourselves debugging specifications rather than proce-
dures—we will need debugging as long as we create new
applications.

As a teacher, I've come to believe that the greatest single differ-
ence between the person who succeeds in a programming class
and the person who doesn'’tis that the successful programmer de-
velops debugging skills and the unsuccessful programmer does
not. While all learners commit the same types of errors in their first
drafts, the individual who doesn’t understand debugging remains
blocked and frustrated, and the individual who does understand
debugging finds the errors and goes on to experiment with new
and more powerful techniques.

You may discover that your growth as a programmer has been re-
stricted by your debugging skills. Think of a time when you were
frustrated by a new operating system or language. Was part of your
difficulty caused by your inability to find bugs in the new environ-
ment? To restate the question, if | could guarantee that you would
find a new bug after only two seconds of searching, would you be
willing to tackle almost any project in any environment? Success-
ful debugging supports exploration and refines understanding.
The more adept you are at finding bugs in a given environment, the
more readily you can master that environment.

Debugging C Is Demanding

You can’trely on debugging techniques borrowed from other pro-
gramming languages when you program in C. C programmers
willingly discard the protection provided by other high-level lan-
guages. Too often, newcomers underestimate the impact of this
change on the debugging environment. Novices assume that be-
cause both C and Pascal are small and well-structured languages,
debugging C is similar to debugging Pascal. Nothing could be
farther from the truth. Some of the special problems associated

