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Introduction

Why a Book on Debugging?

To write programs that work, you must know how to debug. It’s that
simple. In fact, if you produce working programs, you will spend at
least half your time debugging.

To write programs that work, you must know also how to define
problems (systems analysis), how to design solutions (algorithms
and software engineering), and how to code in your chosen pro-
gramming language (syntax and good practice). There are
hundreds of books written on these subjects.

Isn’tit strange that there are no books on debugging? | think so. Al
programmers do it, but nobody wants to talk about it and | think
that's a mistake. First, you canimprove your debugging skills. Like
design skills, debugging skills evolve from critical analysis and ex-
posure to new techniques and ideas. Second, you must improve
your debugging skills. Good debugging skills are requisite to suc-
cessful programming. To grow as a programmer and to tackle in-
creasingly challenging assignments, your ability to debug also
must grow. Because you program in C, you'll face peculiar debug-
ging problems that demand enhanced debugging skills.

Debugging Then and
Debugging Now

When | began programming in 1969, the teaching language was
Fortran IV. A well-designed program was one that got the right an-
swer. Attitudes about program design have changed since then.
Today, by means of such carefully designed teaching languages
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as Pascal and Logo, beginning students are introduced early to
modular design. But, when | consider how | learned to debug, my
introduction to programming seems rigorously structured by com-
parison. Except for a vague admonition to “use trace statements to
find any problems,” | don’t remember any classroom advice about
how to debug. Sadly, that situation hasn’t changed much.

The popular introductory Pascal programming texts (Oh! Pascall,
by Doug Cooper and Michael Clancy; Introduction to Pascal and
Structured Design, by Nell Dale and David Orshalick; and An In-
troduction to Programming and Problem Solving with Pascal, 2nd
Edition, by G. Michael Schneider) include debugging tips—usually
at the end of each chapter. The Clancy and Cooper sections are
called “debugging and anti-bugging.” | suggest that a more pre-
cise title might be “anti-bugging and anti-bugging.” Except for the
all-purpose admonition to include trace statements, the book sec-
tions cover defensive programming strategies, rather than debug-
ging strategies. The authors nurture a belief that either good
programmers won't have bugs or, if they do, programmers know
intuitively how to find bugs.

Until | started teaching, | assumed that good debugging skills were
a natural outgrowth of good design skills. Not so. A bright student
may intuitively decompose a problem into beautifully coherent,
cohesive, functional modules. That same student may not be able
to find the most trivial syntax errors, let alone discover subtle run-
time bugs. Equally bright students turn in working designs that lit-
erally defy analysis. While | don’t believe that we learn debugging
by studying design, | do believe that we can learn efficient
debugging.

We can develop a methodological model that directs our efforts to-
ward more productive searches. We can acquire heuristic knowl-
edge (a kind of folk wisdom) about where to look first. We can be
deliberately sensitive to the different variables and observable
phenomena in different environments. We can become expert at
selecting and using appropriate tools. And, through critical analy-
sis of our attempts to find “worthy” bugs, we can learn from our
own mistakes.

Debugging = Working Programs

The simple truth is that programs seldom run right the first time. As
I pointed out, debugging accounts for at least half of most develop-
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ment project time. Careful, disciplined design and coding won’t
eliminate the need for debugging; good design and coding simply
make efficient debugging possible.

There is no technological relief on the horizon. The design/debug
effort ratio remains fairly constant across all language classes.
Neither better design nor better languages will eliminate debug-
ging. Although debugging may change shape—we may someday
find ourselves debugging specifications rather than proce-
dures—we will need debugging as long as we create new
applications.

As a teacher, I've come to believe that the greatest single differ-
ence between the person who succeeds in a programming class
and the person who doesn'’tis that the successful programmer de-
velops debugging skills and the unsuccessful programmer does
not. While all learners commit the same types of errors in their first
drafts, the individual who doesn’t understand debugging remains
blocked and frustrated, and the individual who does understand
debugging finds the errors and goes on to experiment with new
and more powerful techniques.

You may discover that your growth as a programmer has been re-
stricted by your debugging skills. Think of a time when you were
frustrated by a new operating system or language. Was part of your
difficulty caused by your inability to find bugs in the new environ-
ment? To restate the question, if | could guarantee that you would
find a new bug after only two seconds of searching, would you be
willing to tackle almost any project in any environment? Success-
ful debugging supports exploration and refines understanding.
The more adept you are at finding bugs in a given environment, the
more readily you can master that environment.

Debugging C Is Demanding

You can’trely on debugging techniques borrowed from other pro-
gramming languages when you program in C. C programmers
willingly discard the protection provided by other high-level lan-
guages. Too often, newcomers underestimate the impact of this
change on the debugging environment. Novices assume that be-
cause both C and Pascal are small and well-structured languages,
debugging C is similar to debugging Pascal. Nothing could be
farther from the truth. Some of the special problems associated



