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INTRODUCTION

The education of the mathematics major begins with the study
of three basic disciplines: mathematical analysis, analytic geo-
metry and higher algebra. These disciplines have a number of points
of contact, some of which overlap; together they constitute the
foundation upon which rests the whole edifice of modern mathema-
tical science.

Higher algebra—the subject of this text—is a far-reaching
and natural generalization of the basic school course of elementary
algebra. Central to elementary algebra is without doubt the problem
of solving equations. The study of equations begins with the very
simple case of one equation of the first degree in one unknown.
From there on, the development proceeds in two directions: to
systems of two and three equations of the first degree in two and,
respectively, three unknowns, and to a single quadratic equation
in one unknown and also to a few special types of higher-degree
equations which readily reduce to quadratic equations (quartic
equations, for example).

Both trends are further developed in the course of higher algebra,
thus determining its two large areas of study. One—the foundations
of linear algebra—starts with the study of arbitrary systems of
equations of the first degree (linear equations). When the number
of equations equals the number of unknowns, solutions of such
systems are obtained by means of the theory of determinants. Howe-
ver, the theory proves insufficient when studying systems of linear
equations in which the number of equations is not equal to the
number of unknowns. This is a novel feature from the standpoint
of elementary algebra, but it is very important in practical appli-
cations. This stimulated the development of the theory of matrices,
which are systems of numbers arranged in square or rectangular
arrays made up of rows and columns. Matrix theory proved to be
very deep and has found application far beyond the limits of the
theory of systems of linear equations. On the other hand, investiga-
tions into systems of linear equations gave rise to multidimensional
(so-called vector or linear) spaces. To the nonmathematician, mul-
tidimensional space (four-dimensional, to begin with) is a nebulous
and often confusing concept. Actually, however, the notion is
a strictly mathematical one, mainly algebraic, and serves as an
important tool in a variety of mathematical investigations and
also in physics.

The second half of the course of higher algebra, called the algebra
of polynomials, is devoted to the study of a single equation in one
unknown but of arbitrary degree. Since there is a formula for solving
quadratic equations, it was natural to seek similar formulas for
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higher-degree equations. That is precisely how this division of
algebra developed historically. Formulas for solving equations
of third and fourth degree were found in the sixteenth century.
The search was then on for formulas capable of expressing the roots
of equations of fifth and higher degree in terms of the coefficients
of the equations by means of radicals, even radicals within radicals.
It was futile, though it continued up to the beginning of the nine-
teenth century, when it was proved that no such formulas exist
and that for all degrees beyond the fourth there even exist specific
examples of equations with integral coefficients whose roots cannot
be written down by means of radicals.

One should not be saddened by this absence of formulas for
solving equations of higher degrees, for even in the case of third
and fourth degree equations, where such formulas exist, computa-
tions are extremely involved and, in a practical sense, almost useless.
On the other hand, the coefficients of equations one encounters in
physics and engineering are usually quantities obtained in measu-
rements. These are approximations and therefore the roots need
only be known approximately, to within a specified accuracy. This
led to the elaboration of a variety of methods of approximate solu-
tion of equations; only the most elementary methods are given
in the course of higher algebra.

However, in the algebra of polynomials the main thing is not
the problem of finding the roots of equations, but the problem of
their existence. For example, we even know of quadratic equations
with real coefficients that do not have real-valued roots. By extending
the range of numbers to include the collection of complex numbers,
we find that quadratic equations do have roots and that this holds
true for equations of the third and fourth degree as well, as follows
from the existence of formulas for their solution. But perhaps there
are equations of the fifth and higher degree without a single root
even in the class of complex numbers. Will it not be necessary,
when seeking the roots of such equations, to pass from complex
numbers to a still bigger class of numbers? The answer to this ques-
tion is contained in an important theorem which asserts that any
equation with numerical coefficients, whether real or complex, has
complex-valued (real-valued, as a special case) roots; and, generally
speaking, the number of roots is equal to the degree of the equation.

Such, in brief, is the basic content of the course of higher algebra.
It must be stressed that higher algebra is only the starting point of
the vast science of algebra which is very rich, extremely ramified
and constantly expanding. Let us attempt, even more sketchily,
to survey the various branches of algebra which, in the main, lie
beyond the scope of the course of higher algebra.

Linear algebra, which is a broad field devoted mainly to the
theory of matrices and the associated theory of linear transforma-
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tions of vector spaces, includes also the theory of forms, the theory
of invariants and tensor algebra, which plays an important role
in differential geometry. The theory of vector spaces is further
developed outside the scope of algebra, in functional analysis
(infinite-dimensional spaces). Linear algebra continues, so far,
to occupy first place among the numerous branches of algebra as to
diversity and significance of its applications in mathematics, physics
and the engineering sciences.

The algebra of polynomials, which over many decades has
been growing as a science concerned with one equation of arbitrary
degree in one unknown, has now in the main completed its develop-
ment. It was further developed in part in certain divisions of the
theory of functions of a complex variable, but basically grew into
the theory of fields, which we will speak of later on. Now the very
difficult problem of systems of equations of arbitrary degree (not
linear) in several unknowns—it embraces both divisions of the
course of higher algebra and is hardly touched on in this text—actual-
ly has to do with a special branch of mathematics called algebraic
geometry.

An exhaustive treatment of the problem of the conditions under
which an equation can be solved in terms of radicals was given
by the French mathematician Galois (1811-1832). His investiga-
tions pointed out new vistas in the development of algebra and led,
in the twentieth century, after the work of the German woman-
algebraist E. Noether (1882-1935), to the establishment of a fresh
viewpoint on the problems of algebraic science. There is no doubt
now that the central problem of algebra is not the study of equa-
tions. The true subject of algebraic study is algebraic operations,
like those of addition and multiplication of numbers, but possibly
involving entities other than numbers.

In school physics one deals with the operation of composition
of forces. The mathematical disciplines studied in the junior courses
of universities and teachers’ colleges provide numerous examples
of algebraic operations: the addition and multiplication of matrices
and functions, operations involving vectors, transformations of
space, etc. These operations are usually similar to those involving
numbers and bear the same names, but occasionally some of the
properties which are customary in the case of numbers are lost.
Thus, very often and in very important instances, the operations
prove to be noncommutative (a product is dependent on the order
of the factors), at times even nonassociative (a product of three
factors depends on the placing of parentheses).

A very systematic study has been made of a few of the most
important types of algebraic systems (or structures), that is, sets
composed of entities of a certain nature for which certain algebraic
operations have been defined. Such, for example, are fields. These
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are algebraic systems in which (like in the systems of real and com-
plex numbers) are defined the operations of addition and multipli-
cation, both commutative and associative, connected by the distri-
butive law (the ordinary rule of removing brackets holds) and pos-
sessing the inverse operations of subtraction and division. The theory
of fields was a natural area for the further development of the theory
of equations, while its principal branches—the theory of fields of
algebraic numbers and the theory of fields of algebraic functions—
linked it up with the theory of numbers and the theory of functions
of a complex variable, respectively. The present course of higher
algebra includes an elementary introduction to the theory of fields,
and some portions of the course—polynomials in several unknowns,
the normal form of a matrix—are presented directly for the case
of an arbitrary base field.

Broader than a field is the concept of a ring. Unlike the field,
division is not required here and, besides, multiplication may be
noncommutative and even nonassociative. The simplest instances
of rings are the set of all integers (including negative numbers),
the set of polynomials in one unknown and the set of real-valued
functions of a real variable. The theory of rings includes such old
branches of algebra as the theory of hypercomplex numbers and
the theory of ideals. It is related to a number of mathematical
sciences (functional analysis being one) and has already made
inroads into physics. The course of higher algebra actually contains
only the definition of a ring.

Still greater in its range of applications is the theory of groups.
A group is an algebraic system with one basic operation, which
must be associative but not necessarily commutative, and must
possess an inverse operation (division if the basic operation is mul-
tiplication). Such, for example, is the set of integers with respect
to the operation of addition and also the set of positive real num-
bers with respect to the operation of multiplication. Groups were
already important in the theory of Galois, in the problem of the
solvability of equations in terms of radicals; today groups are a power-
ful tool in the theory of fields, in many divisions of geometry, in
topology, and also outside mathematics (in crystallography and
theoretical physics). Generally speaking, within the sphere of
algebra, group theory takes second place after linear algebra as to
its range of applications. Our course of higher algebra contains
a chapter on the fundamentals of the theory of groups.

In recent decades an entirely new branch of algebra—lattice
theory—has come to the fore. A lattice is an algebraic system with
two operations—addition and multiplication. These operations
must be commutative and associative and must also satisfy the
following requirements: both the sum and the product of an element
with itself must be equal to the element; if the sum of two elements
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is equal to one of them, then the product is equal to the other, and
conversely. An example of a lattice is the system of natural num-
bers relative to the operations of taking the least common multiple
and the greatest common divisor. Lattice theory has interesting
ties with the theory of groups and the theory of rings, and also
with the theory of sets; one old branch of geometry (projective
geometry) actually proved to be a part of the theory of lattice.
It is also worth mentioning the expansion of lattice theory into
the theory of electric circuits.

Certain similarities between parts of the theories of groups,
rings and lattices led to the development of a general theory of
algebraic systems (or universal algebras). The theory has only taken
a few steps but its general outlines are evident and certain links
with mathematical logic that have been perceived point to a rich
future in this area.

The foregoing scheme does not of course embrace the whole
range of algebraic science. For one thing, there are a number of
divisions of algebra bordering on other areas of mathematics, such
as topological algebra, which deals with algebraic systems in which
the operations are continuous relative to some convergence defined
for the elements of the systems. An example is the system of real
numbers. Closely related to topological algebra is the theory of
continuous (or Lie) groups, which has found numerous applica-
tions in a broad range of geometrical problems, in theoretical physics
and hydrodynamics. Incidentally, the theory of Lie groups is chara-
cterized by such an interweaving of algebraic, topological, geome-
tric and function-theoretic methods as to be more properly conside-
red a special branch of mathematics altogether. Next we have the
theory of ordered algebraic systems which arose out of investigations
into the fundamentals of geometry and has found applications
in functional analysis. Finally, there is differential algebra which
has established fresh relationships between algebra and the theory
of differential equations.

Quite naturally, the flowering of algebraic science so evident
today is not accidental, but is an organic part of the general advance
of mathematics and is due, in large measure, to the demands made
upon algebra by the other mathematical sciences. On the other hand,
the development of algebra itself has exerted a far-reaching influence
on the elaboration of allied branches of science; this influence has
been particularly enhanced by the spread of applications so chara-
cteristic of modern algebra. One is often tempted to speak of an
“algebraization” of mathematics.

We conclude this rather sketchy survey of algebra with a gene-
ral historical background.

Babylonian and, later, ancient Greek mathematicians studied
certain problems of algebra, in particular the solution of simple
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equations. The peak of algebraic investigations during this period
was reached in the works of the Greek mathematician Diophantos
of Alexandria (third century). These studies were then extended by
mathematicians of India: Aryabhata (sixth century), Brahmagupta
(seventh century), and Bhaskara (twelfth century). In China, alge-
braic problems got an early start: Ch’ang Ts'ang (second century
B.C.), Ching Chou-chan (first century A.D.). An outstanding Chinese
algebraist was Ch’in Chiu-shao (thirteenth century).

A major contribution to the development of algebra was made
by scholars of the Middle East whose writings were in Arabic, par-
ticularly the Uzbek scholar Muhammad al-Khowéarizmi (ninth cen-
tury) and the Tajik mathematician and poet Omar Khayyam (1040-
1123). In particular, the very term “algebra” came from the title
of al-Khowarizmi’s treatise Hisdb al-jabr w’al-mugd-balah.

The above-mentioned studies of Babylonian, Greek, Indian,
Chinese, and Central-Asian algebraists have to do with those pro-
blems of algebra which constitute the present school course of ele-
mentary algebra and only occasionally touch on equations of the
third degree. That, in the main, was the range of problems that
interested medieval European algebraists and those of the Renais-
sance, such as the Italian mathematician Leonardo of Pisa (Fibo-
nacci) (twelfth century) and the founder of present-day algebraic
symbolism, the Frenchman Vieta (or Viéte) (1540-1603). We have
already mentioned that in the sixteenth century methods were
found for solving equations of the third and fourth degree; here
we must mention the names of the Italians Ferro (1465-1526), Tar-
taglia (1500-1557), Cardano (1501-1576) and Ferrari (1522-1565).

The seventeenth and eighteenth centuries saw an intensive ela-
boration of the general theory of equations (or the algebra of poly-
nomials) in which outstanding scholars of the time participated:
Descartes (1596-1650), Sir Isaac Newton (1643-1727), d'Alembert
(1717-1783) and Lagrange (1736-1813). In the eighteenth century,
the Swiss mathematician Cramer (1704-1752) and Laplace (1749-
1827) of France, laid the foundation of the theory of determinants.
At the turn of the century, the great German mathematician Gauss
(1777-1855) proved the earlier mentioned fundamental theorem on
the existence of roots of equations with numerical coefficients.

The first third of the nineteenth century stands out in the history
of algebra as the time when the problem of the solvability of equa-
tions by radicals was resolved. Proof of the impossibility of obtain-
ing formulas for the solution of equations of degree five or higher was
obtained by the Italian mathematician Ruffini (1765-1822) and in
more rigorous form by the Norwegian Abel (1802-1829). As already
mentioned, an exhaustive treatment of the problem of the conditions
under which an equation admits of solution in terms of radicals
was given by Galois.
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Galois’ theory spurred the advance of algebra in the latter half
of the nineteenth century. There appeared the theory of fields of
algebraic numbers and of fields of algebraic functions and the asso-
ciated theory of ideals. Here, mention should be made of the German
mathematicians Kummer (1810-1893), Kronecker (1823-1891), and
Dedekind (1831-1916), and the Russian mathematicians E. I. Zolo-
tarev (1847-1878) and G. F. Voronoi (1868-1908). Particular advances
were made in the theory of finite groups which grew out of the research
of Lagrange and Galois; this work was carried out by the French
mathematicians Cauchy (1789-1857) and Jordan (1838-1922), the
Norwegian Sylow (1832-1918), the German algebraists Frobenius
(1849-1918) and Holder (1859-1937). The investigations of the Nor-
wegian S. Lie (1842-1899) initiated the theory of continuous groups.

The works of Hamilton (1805-1865) and the German mathemati-
cian Grassmann (1809-1877) laid the foundations for the theory
of hypercomplex systems or, as we now say, the theory of algebras.
A prominent role in the development of this branch of algebra was
played (at the end of the century) by the Russian mathematician
F. E. Molin (1861-1941).

Linear algebra attained great heights in the nineteenth century
primarily due to the work of the English mathematicians Sylvester
(1814-1897) and Cayley (1821-1895). Work continued on the algebra
of polynomials; we note only the method of approximate solution
of equations found by the Russian geometer N. I. Lobachevsky
(1792-1856) and the work of the German Hurwitz (1859-1919). Alge-
braic geometry was begun in the latter part of the nineteenth century,
particularly in the works of the German mathematician M. Noether
(1844-1922).

In the twentieth century, algebraic studies expanded considerab-
ly and algebra, as we already know, occupies a very special place
of honour in mathematics. New divisions of algebra have sprung
up, including the general theory of fields (in the 1910’s), the theory
of rings and the general theory of groups (1920’s), topological algebra
and lattice theory (1930’s), the theory of semigroups and the theory
of quasigroups, the theory of universal algebras, homological algebra,
the theory of categories (all in the 1940’s and 1950’s). Prominent
mathematicians are presently engaged in all spheres of algebra, and
in a number of countries (in the Soviet Union, for example) whole
schools of algebra are in evidence.

Among the prerevolutionary Russian algebraists, noteworthy
contributions to algebra were also made by S.0O. Shatunovsky
(1859-1929) and D. A. Grave (1863-1939). However, it was only
after the Great October Revolution of 1917 that algebraic investiga-
tions in the Soviet Union reached high peaks. These studies now
embrace practically all divisions of modern algebraic science and
in some the work of Soviet algebraists is of a leading nature. Suffice
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it to name only two algebraists: N. G. Chebotarev (1894-1947), who
worked in the theory of fields and Lie groups, and O. Yu. Schmidt
(1891-1956), the famous polar explorer who was also a noted algeb-
raist and founded the Soviet school of group theory.

We conclude this brief survey of the historical background and
modern state of algebra with the remark that most of the fields of
research mentioned here lie beyond the scope of the present course
of higher algebra. The aim of the survey was to help the reader to
find the proper place for this text in algebraic science as a whole
within the edifice of mathematics.



CHAPTER 1

SYSTEMS
OF LINEAR EQUATIONS.
DETERMINANTS

i{. The Method of Successive Elimination of Unknowns

We begin the course of higher algebra with a study of systems
of first-degree equations in several unknowns or, to use the more
common term, systems of linear equations.*

The theory of systems of linear equations serves as the foundation
for a vast and important division of algebra—linear algebra—to
which a good portion of this book is devoted (the first three chapters
in particular). The coefficients of the equations considered in these
three chapters, the values of the unknowns and, generally, all num-
bers that will be encountered are to be considered real. Incidentally,
all the material of these three chapters is readily extendable to the
case of arbitrary complex numbers which are familiar from elemen-
tary mathematics.

In contrast to elementary algebra, we will study systems with
an arbitrary number of equations and unknowns; at times, the
number of equations of a system will not even be assumed to coincide
with the number of unknowns. Suppose we have a system of s linear
equations in n unknowns. Let us agree to use the following symbo-
lism: the unknowns will be denoted by z and subscripts: zy, z,, . . .
..., I,; we will consider the equations to be enumerated thus:
first, second, . . ., sth; the coefficient of z; in the ith equation will
be given as a;;**. Finally, the constant term of the ith equation will
be indicated as b;.

* The term “linear” stems from analytic geometry, where a first-degree
equation in two unknowns defines a straight line in a plane.

** We thus use two subscripts, the first indicates the position number of
the equation, the second the position number of the unknown. They are to be
read: a;; “a sub one one” amf not “a eleven”; a3, “a sub three four” and not
“a thirty-four”, and are not separated by a comma.
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Our system of equations will now be written as follows:

ayxy + a7, + . . . + az, = by,

any + Ty + . . .+ Ay = by,
(1)
A1 Xy + Aoy + . . . A, = by
The coefficients of the unknowns form a rectangular array:
a11Qy5 - - . QAyp
ilys « » = gy
(2)
As1Qsp - - - Asp

called a matriz of s rows and n columns; the numbers a;; are termed
elements of the matrix.* If s=n (which means the number of rows
is equal to the number of columns), then the matrix is called a square
matrix of order n. The diagonal of the matrix from upper left corner
to lower right corner (i.e., composed of the elements ayy, @4, - . -, @4n)
is called the principal diagonal. We call a square matrix of order
n a unit matriz of order n if all the elements of its principal diagonal
are equal to unity and all other elements are zero.

The solution of the system of linear equations (1) is a set of n

numbers &y, k,, ..., k, such that each of the equations (1) becomes
an identity upon substitution of the corresponding numbers #k;,
i=1, 2, ..., n for the unknowns z;.**

A system of linear equations may not have any solutions; it is
then called inconsistent. Such, for example, is the system

z + 9z, =1,
1+ 52y =17

The left members of these equations coincide, but the right members
are different and so no set of values of the unknowns can satisfy
both equations simultaneously.

If a system of linear equations has solutions, it is termed conr-
sistent. A consistent system is called determinate if it has a unique
solution—only such are considered in elementary algebra—and inde-
terminate if there are more solutions than one. As we shall learn
later on, there may even be an infinity of solutions. For instance,

* Thus, if the matrix (2) is regarded by itself (not connected with the
system (1)), then the first subscript of element a;; indicates the number of the
row, the second the number of the column at the intersection of which the
element is positioned.

** We stress the fact that the numbers %y, k,, . .., k, constitute a single
solution of the system and not n solutions.



