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PREFACE

The second volume of Dynamic Fracture Mechanics is a logical’ continuation of the
investigations that were started in the first volume. It should be recalled that we began
with a description of the basic concepts of dynamic fracture ‘mechagics, and then
considered analytical and numerical methods for determining stress intensity factors
in two- and three-dimensional bodies with stationary linear, .curvilinear, plane, and
penny-shaped cracks subjected to harmonic and impact loading. In this volume, we
shall consider the laws of crack propagation with a constant or variable velocity in
elastic and elastic-plastic bodies and an elastic lattice. We shall also describe
numerical and experimental methods for determining the stress intensity factors in
bodies with running cracks, as well as methods for the arrest of cracks.

While preparing this volume we adhered to the notation and method of
presentation used in the first volume, since it presents the formulation and solution of
the problems in a simple and comprehensible manner. This spares us the task of
writing a new extensive preface, but a few remarks are in order.

Over the last few decades, fracture mechanics has come to be recognized as a
separate branch of mechanics of deformable solids. The main aim of these
investigations is to determine the load-carrying capacity of bodies and structures by
taking into account the initial distribution and possible propagation of cracks. The
results obtained are used to ensure the strength, reliability, and long-life of structures,
and to work out effective means of nondestructive testing in order to prevent
accidents that may have serious economic and social repercussions. However, it is
obvious that investigations of fracture mechanics are also important for techniques
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Wil PREFACE

involving controlled destruction, e.g., for the extraction of mineral deposits, drilling
of wells, and cutting of metals.

' The solution of these problems in fracture mechanics involves the construction of

fracture models and the dévelopment of analytical and numerical methods of solving

problems for bodies with stationary and running cracks within the framework of the

theory of elasticity, plasticity, viscoelasticity, and for nonlinear media.

The successful practical application of fracture mechanics can primarily be
.attributed to the mechanics of quasi-static cracks. In this case, methods have been
worked out and standardized to answer questions concerning the stability of an
existing arterial crack under quasi-stationary loads.

As regards dynamic fracture mechanics, which analyzes the stability of stationary
loads subjected to dynamic loading and processes of crack propagation, the
theoretical investigations cannot be backed up by practical recommendations, for the
time being. This is due to the extremely complicated behavior of fracture mechanics,
and also to the existing disproportionality between the development of theoretical and
experimental methods in dynamic fracture mechanics. For many years, progress in
this field was associated with the solution (by analytical and numerical methods) of
simulation problems in idealized situations. This left open the question of a
correspondence between the idealized situation and the real conditions of dynamic
fracture, as well as the experimental confirmation of theoretical results.

However, the number of articles devoted to experimental methods in dynamic
fracture mechanics has increased sharply over the last few years and has necessitated
a reconsideration of many basic concepts. In this field a presentation of the results is
required in which ‘‘the leitmotif, the ever recurring melody, is that two things are
indispensable in any reasoning, in any description we shape of a segment of reality; to
submit to experience and to face the language that is used, with unceasing logical
criticism.”*

Accordingly, considerable attention is paid in this book to a description of the
experimental methods in dynamic fracture mechanics and to a comparison of
theoretical and experxmental results.

With this end in view, the authors have supplemented the results of their
investigations with other important results, including those obtained by American
scientists, who have made a significant contribution towards the development of this
field.

The authors are privileged to express their gratitude to Profs. V. M. Finkel,
G. L. Khesin, and L. I. Slepyan, and also to Dr. V. M. Markochev for the material
they provided.

V. Z. Parton
V. G. Boriskovsky

*Richard von Mises, Mathematical theory of compressible fluid flow. Completed by Hilda Geiringer and
G. S. S. Ludford. Academic Press, New York, 1958.
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CHAPTER

ONE

CRACK PROPAGATION WITH CONSTANT
AND VARIABLE VELOCITIES

Problems concerning the propagation of cracks in plates were first formulated and
solved in [10, 34]. The problem of the appearance of a crack (at the initial moment of
time ¢+ = 0) and its propagation in both directions (starting from a zero initial length)
with a constant velocity under the action of a uniform tensile stress was considered in
[34], while the sudden appearance of a semi-infinite cut at the instant # = 0 in a tensile
stress field and its propagation with a constant velocity were discussed in [10].
Naturally, the solution of both these problems can be regarded as a calibration test for
determining the applicability of numerical methods in the investigation of crack
propagation. A comparison of analytical and numerical results is carried out for the
initial instants of time (until the arrival at the crack tip of the waves scattered from the
edge or from the opposite crack tip), since the analytical results are obtained for inifinite
bodies. In the case of a stationary crack, the solution obtained in [10] coincides with
that for a plate with a semi-inifinite crack subjected to an instantaneous tensile stress
applied to the crack faces. This solution can also be used for calibration of numerical
results. It should be observed that both these results are particular cases of the general
solution of the problem of crack propagation with an arbitrary velocity under the action
of arbitrary loads.

The problem of crack growth at a variable speed (0 < v < c,) for an elastic body
under antiplane strain was solved by B.V. Kostrov [92]. For plane strain, the problem
was solved by L.B. Freund [64, 65] (for time-independent loads) and B.V. Kostrov
[93] (for arbitrary loading). The latter solution is quite cumbersome and hard to realize
in actual practice. It is better to solve this type of problem by using methods which may
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2 DYNAMIC FRACTURE MECHANICS

be less universal but present the results in a more comprehensible form. The number of
quadratures in the general solution for a semi-infinite crack (0 < v < cg) was reduced’
from five to four by L.I. Slepyan [207], while an analysis of the general solution and

functions, in terms through which the solution is presented, was carried out in [199].

The axisymmetric problem for a penny-shaped crack propagating with a variable

velocity was solved in [197].

Problems of cracks propagating with supercritical velocities* were analyzed in
[12] for wedging out at a constant velocity (c; < v < ¢;), and in [95] for crack
propagation with a variable velocity in the same range.

The solution of the problem in which the velocity of crack propagation passes
through the critical value (in the course of its motion), say, from the interval 0 < v < ¢y
to cx < v < c,, or vice versa, was obtained in [217, 218]. The interacoustic range of
crack propagation was also investigated in these works.

It is well known that the numerical realization of dynamic problems of fracture
mechanics is quite complicated. Hence, an approximation has been worked out in [192,
207], based on a simplification of the expression for the solution of Lamb’s problem. A
detailed analysis of the approximation technique and a comparison of the results
obtained by this method with the exact solution are contained in [199].

The propagation of a semi-infinite crack whose faces are suddenly subjected to
uniformly distributed stresses (this is equivalent to the sudden appearance of a semi-in-
finite crack in a stressed body) is investigated in [130] (antiplane problem) and [196]
(plane problem). The increase in load applied to the faces of a semi-infinite crack is
discussed in [195], where it is shown that it may lead to a decrease in the velocity of
crack propagation. If a load applied at a certain distance from the edge of a crack moves
its faces apart, a collision of the crack faces takes place in the beginning. This process
has been described in [198].

A number of self-similar problems concerning the propagation of finite cracks have
been investigated. A review of the works devoted to self-similar problems in the theory
of elasticity is contained in [4].

In this chapter we shall consider three alternative approaches to the solution of
problems of crack propagation with variable velocity. The solution of several particular
problems will also be presented.

1.1 SELF-SIMILAR PROBLEMS

We introduce the polar system of coordinates with its origin at the center of a crack
propagating in both directions. The components of the displacement vector are ex-
pressed in the normal form through two wave potentials ¢ and y:

a !
u=-—x —l—ai; u,,=+—al—--a—q'—; u,=0 (LD

or r oo ) or

*The solution of corresponding mixed problems is of particular interést for describing collisions of elastic
bodies. The possibility of induced propagation of cracks with supersonic velocities is discussed in [20].



CRACK PROPAGATION WITH CONSTANT AND VARIABLE VELOCITIES 3

Taking these relations into account, we can present the components of the stress tensor
in the following form:

iS4k S S 2

Sow=2p 1 2vv2?+29(—ll'-_gi’—+%-’- _Z;_Z+712' %“% aa:;,a) (1.2)

G, =20 : Y = V2P, 3 =3,=0 .

T e

PmZllatl
The potentials ¢ and ¥ satisfy the wave equations

T, P (1.4)

As usual, the spatial variable r and time ¢ are introduced in the solution of the
self-stimulating problem with the help of a single variable @ = r/t. Going from
variables r,0,7 to variables w,0, the second derivatives of the potentials ¢ (r,0,7) and ¥
(r,8,t) with respect to time can be written in the form

P _ oo 2y
Functions ® and V¥ satisfy the equations
21 — (o/c.)] 22 _ 2] 0P 4 0@
o [1— /] S 1= 2(e] 22 4 22—
a2 ovr v (1.6)
v [ (W Ry 7350 | (gt i i 5 v el Wi s BN
W [1— (/] et [1 = 2(o/c)] S+ 2-=0
Using the substitution of variables [202]
“wa=¢;sech(—A4;), m==c¢ysech(—2,)
we can transform the system (1.6) as follows:
J°b 9P .o 2w 1.7)
=0, = ( «
au? o By + o =0

Hence the functions @ and ¥ can be presented as the real parts of the complex functions
®=Re lwl A — io)l =Re (¥ + iry)
W == Re [19, g — i0)] = Re (¥ 4 i)

The derivatives of o4 and o, with respect to @ can be expressed in terms of ® and W:

(1.8)
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2 da“ .! " ’2 S——" 9
w _ — [ e (‘ /cz .I ow w b (1 )
w? m __ Iz S ( ), Cz) I ) i I w 08 .‘
B [0} ‘ / l

With the help of Cauchy-Rigmann conditions we can present these equations in the
form '

w? Oy, g 9 o1 (w22 92
-;—.' ™ = — [2—(w/cy) l_dm + 21— (w/cr)’] i
w? aq'o__ T, allf_‘ (ol 12 0.’.1 (1.10)
T ow [2=(/e.Y] (-0} 21— (weiy] dw

Suppose that a finite crack propagates in two opposite directions with a constant
velocity v. A uniform tensile stress field is applied at a distance from the crack in such a
way that the following conditions are satisfied:

Iy (0, 0)=3er, (0, M)=0, |Jow|<

tty(o, 0=ty (0, =0, | o] > (1.41)
6,0(0), 0)=3(0(wv ﬂ)=0; — co< w <00
2 2
. g i
O, O)=]w T P OTa
(1.12)

0 y W > c
¥(ow, 0)=0; 0 >.c,
Let us carry out another transformation
=8+ iny=sech (A, —i0)

mapping the semicircle 0 < 6 < m,w < ¢, onto the halfplane n, = 0. The semicircle
without diameter is mapped onto the interval m;, = 0, 1 < [{,| <o of the real axis, while
the diameter is mapped onto the segmentm, = 0, |{,| < 1. Similarly, the transformation

is also applied to the function W. Formula (1.12) is then transformed into

<Re[w:“‘)]=0 st bRl oo e 1.13) {
Re [2(C)] =0 at ,=0, || >1 |
iilnlt:thesecondandthxrd conditions in (1.11) can be written in the following form: |
Im [wi€)] =0; 7,=0; (We)< Il <l

*‘EQ@]F‘O? Np=0; |& | >(v/c)
» _?.’ ' _.“'f " :

(1.14)
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For0 < w <v, wheno = *¢,§, = *c,§,, conditions ge = 0 and 0,4 = 0 assume the
form

¢y [2— (w/c;)’] Re [“”2 N+ 2c,[1— (w/c,?]'2 Im I'wl C]=0
€, [2— (w/c2P] Re [w1 (C)] — 26, [1 — (w/c?]2 Im [w3 ()] =0 (1.15)

Assuming that the stresses at the crack tip (o = v) are singular and have a singularity of
the type (v — w)~* for w;({,)) and w,({,) we obtain

w1 (=0 (R—cit)) ™ a |t | —v
wé((,):O (,02_”(2)—1/‘2 al | 68 | — @
Function W;{, can be found from the second equations in (1.13), (1.14), and (1.16):

(1.16)

w2 (Gg)= v — 2Acs
=
2(()="2= Py P (1.17)

Similarly, we get

iA(2c3—c%}

WI (Cl) (l 2) 12 (02 ‘k?)?ﬁ (l i 18)
Constant A is real and is determined from the condition of uniform extension at infinity:
02 4 1)
T, it M (1.19)
P'CQG (Bl' 62)
Here
+13)? +3)?
0@, a,)=[4—(——i] E@—[d+d (—;i]x @®)
h 1 (1.20)

—8E (3)+ 43K (3)

while K and E are complete elliptic integrals of the first and second kind, respectively.
The solution obtained in this way can be used to determine the stressed state in the
vicinity of a crack tip and the stress intensity factor, which is equal to

K;=F @, 3,)¢" |/ vt (1.21)
where
F (3, 3)=20; [Ry 3y, &) K (3,)—431(1—3) K 3;) (1.22)

— |48} (14 830] £ 3B+ 8HIE (3p))
The normal stresses on the line y = 0 are given by

eyt #
= F @y, 3)R: (3, 3) _ (1.23)

Figure 1.1 presents the numerical values of the normalized stress V2ro,,/ ¢V Vc,t as
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V2ro,/q" Vet
0.5

04—

0.3 ey \

0.2

0.1
\ Figure 1.1 Normal stress in the crack plane as a function of
0 02 04 06 0.8 1.0 itsvelocity (v =0.25).

v/c,

a function of v/c, for v = 0.25. It should be noted that the normal stress increases at first
‘with crack speed, attains a maximum at about v = 0.37c,, and then decreases to zero as
the crack velocity becomes equal to the velocity of Rayleigh waves.

Let us study the anti plane analog of this problem. In this case, the displacement
field in polar coordinates is given by

#,=uy=0; n,=w(r, 8, t) (1.24)
and the nonzero components of stress are

- . Ow ot ow
d”_.p-d—r—' % =" 3¢ (1.25)

= (1.26)
2

and the initial conditions of the problem are
0
=g, ;_,z=0,-‘37"’=0 at £.<0, r>0 (1.27)

Along the axis of crack propagation, the boundary conditions have the form

5:=0,'y=0, | x| <l (=)

G (1.28)
0=0, y=0, | x| >!

It can be shown with the help of the superposition principle that this problem is

equivalent to the one in which the shear stresses o,, = — ¢ on the crack are specified
fort >0, i.e.

353= —q(:”y y=07 l X l <l

> (1.29)

w =0, y=0, | x|>1
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while the initial conditions have the form

Jw
w=-—=0; L0

Jt e
As in the case of the plane problem. we introduce the variable w = r/t and carry out the
transformation @ = ¢,sech(—\,). Equation (1.16) can then be reduced to a Laplace

equation in variables A, and 0:

(1.30)

Pw |, Pw
£ =0 (1.31)
ans + a2
Using the supplementary transformation
Gy=Ls+iny=sech (>, +i6) (1.32)

we can present the solution of (1.31) in the form
w==Re [w;((,)] ' ' (1.33)
We define the function W({,) as
. w3 (%), 1>>0
W(g=] @ n> (1.34)
—ws (L), n<<0

Considering that the stresses must have a singularity of the type 1/\Vr, we find from
(1.28) that for small values of | {; — vic, |

24 got v K (v/cs)
‘V c )= g 2 2 )
ta imp V 2y (L3—v/cy) G

Then the longitudinal shear stress intensity factor is given by

K= Ei gV uis,K (v/cy) (1.36)
- .

The dependence of K, on v/c, is shown in Fig. 1.2.

Let us consider the self-similar problem on the growth of a penny-shaped (plane
circular) crack with a constant velocity under a uniform tension. For this purpose, we
make use of Eqs. (1.7)-(1.10), Vol. 1. Applying Laplace and Hankel transformations

K/ q?V eyt
0.8 ;
0.6 =

0.4 7
0.2}

Figure 1.2 Dependence of the stress intensity factor of anti-
0 02 04 06 08 1.0 plane shear on the crack velocity.
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and an inverse Hankel transformation to Egs. (1.10), Vol. 1, we obtain the integral
representations for the Laplace transforms of potentials ¢ and {:

e(r, 2, P)= \‘Ax(/" s)J.(rs)ez ds
0

: - . (1.37)
v(r, 2, p)=§Az(p. s)Jy(rp)e=Tz ds

Here, p is the Laplace transformation variable and y? = s, + (p/c;)*(j = 1, 2). J, and
J, are the zeroth- and first-order Bessel functicas of the first kind, respectively. These
relations are derived by using the zero initial conditions

g, e O W . g o
ety =0; ¢ <0 (1.38)
In view of symmetry about the plane z = 0, the equality o,.(r, 0, t) = 0 holds for all r
and 7. It follows, hence, that A, and A, are not independent and can be presented with
the help of a single function A (p, s):

i 9= =2 (5[4 3 ()]

(1.39)
A (p, 5)= —2(87”-)2/\(/1, 5)
Function A (p, s) is determined from the boundary conditions
3.(r, 0y = —qW(r; ), 0 Lr<I(®)
(1.40)

u,(r, 0, £)=0, r> @)

where ¢q' is the pressure applied to the crack surface. In accordance with the superposi-
tion principle, the solution of problems in which the load is applied at a certain distance
from the crack can be; obtained by superimposing the stressed state onto the stress field,
due to the load (1.40) (due to a given load in the absence of a crack), but with the

opposite sign.
We make use of the notation u(r, t) = u,(r, 0, 1), 0 < r < (). The Laplace
transformation
w(r, p=(u(r, he-rdt (1.41)
3 : ‘

is related to the function A (p, s) through the relation
= !
A(p, S)=§ ru(r, p)Jo(sn=u(p, s) (1.42)

In this relation, the function u(p, s) can be treated as a zero-order Hankel transform for
the function u(r, p). Using the dependences (1.37), (1.39), and (1.42) and the theorems

g — v% =
T emagon).

b
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for inverse Laplace and Hankel transformation, we obtain an expression for the stress
components g, in the plane z = 0 [232]:

3. (r, 0, t)—_‘l“ulv-o_l" 'Z—%'QX_P‘DQZ (1.43)

where the static solution is

‘ls"‘u (s, £)J (rs)ds (1.44)

lszz]u=o= 1 l_

t
_ 2 ol
Ql.._js./o(rs)ds = 15!0 [se (¢t —1)] o las, ) dt}

‘; ‘ (1.45)
Q _f 2/ / [ | cos [seam (t—t)]i[u(s 1)]dt
2 seSo(rs)ds lj 2 It ’

0

and symbol D defines the operator

1,2
i ("”‘)]=%{Y =D cos(nayan
T 1=+ [z —1) (n?2—1)]"?
+. S‘ 73[(:’1,?_ 1() i ) cos (nx) dn} (1.46)

Thus, the problem is reduced to determination of the displacement u(r, r).
Let us first find the static solution [u], - ,. Omitting terms containing Q, and Q, in
(1.43), we obtain

oo 4
3. (r, 0, = —-= (5, (xs)ds j 10 AP E
0 0

e 4
=2 Ysj (xs)ds 5‘ — s (,)],, oL GS)dE S
; 0

D]

where we have used the condition u, = 0forz = Oand r = /. We multiply both sides of
this equation by 1/Vr* — x* and integrate with respect to x

1
9 ey - dF __1—v 1 ‘.vq“’(.\')dx
{;5 o Ol = Yy (1.48)
0
This gives Abel’s equation, whose solution is known:
2(1 — ?xg'V (v) d:
[t (M) yea= — ( ‘) S 2 L Qs (1.49)

V2 —r2 s Von— v
0
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Let us now find the general expression for the shape of a penny-shaped crack
subjected to a load ¢ (x). Taking into account the dynamic terms, the displacement
u(r, t) can be written in the form

b
_ _2=—v) 1 200=v) p —I)P]
n(r, t)'—[”]u-‘) = ‘ (v,'-’—r‘l)”"z [ (T—2v) ¢, 1 2 (1.50)
where
s sin (sz )—-— .I [scl(t—r)]——lul,,_odrds
(1]
(1.51)
)% ‘
' P2=—0—_—j cos (ss)j cos [se,n (£ —1)] —(%[u],,_odtds
T

0

Equation (1.50) is solved iteratively. For the sake of simplicity, let us consider the
case of constant velocity propagation of a crack subjected to a uniform tension:

5 (r, 0, H= —qV; 0 Lr< ot
w,(r, 0, £)=0; r>ot (1.52)

For the first approximation, 4 (r, t), we use the static solution [u], - ,. In this case
we can integrate Eq. (1.49):

— (1)
i (r, )= 24— ‘n:) L [2(t)— ]2 =([u],m0 (1.53)

whence

2(1—v) gVl ()sints) _ a_
p— —% [#]v=0 (1.54)

9 rum e
= [ (r, £)]

Substituting (1.54) into (1.50) and taking (1.51) into account, we obtain, after inverse
transformation,
u® (r, H=(1—38)[u]o-0 (1.55)

Here

4(0—=v2ef g [ —eq |12
= | —arctg | ———| "—g,
a(l—2v)sy |8 l+4¢

(1.56)

(1 +¢€2)? ]

Continuing the iterative process, we obtain

+(1—,)1)[



