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Preface

Seventeen years after the discovery of X-rays by Wilhelm Conrad Rontgen in 1895,
von Laue and his collaborators Friedrich and Knipping found that this novel type of
radiation showed the property of diffraction when passed through a crystal lattice. In
their classic experiment of 1912 they proved that X-rays, like all other electromag-
netic waves, interact with the electron sheath when exposed to a sample of matter,
thus causing a diffraction process.

This experiment can be regarded as the foundation of X-ray analysis, a new method
for determining the structure of solid matter. However, in the first half-century after its
invention this method could seldom be applied, and then only under restrictive
conditions. The execution of one structure determination frequently took several
months, in some cases even a few years. Moreover the results were of limited accuracy
and not always unambiguous.

This situation has changed totally in the last few years. In a dynamic development
modern X-ray analysis has become an instrument of structure determination which
yields the most detailed, safe and precise information on molecular and crystal
geometry available.

Two major reasons can be given for this decisive progress. First, it is a consequence
of the development of the so called “Direct Methods” of phase determination in the
last 20 years. From this it is now possible to work on a large number of compounds,
especially of organic chemistry, which could never have been treated before. Second,
the possibility of executing the extensive numerical calculations with the help of ever
faster and larger computers has reduced the time needed for a structure determination
or has even made its execution possible in the case of larger structures.

Today it can be stated that an X-ray analysis can be performed on any crystalline
compound within a reasonable amount of time if its molecular weight is not too large.

Being now comparable in speed and expense to other methods and superior in
results, the application of X-ray analysis is increasing not only in all chemical
laboratories but also in biological and biochemical as well as in physical research
projects; the number of scientists using this method is becoming larger from year to
year.

Today, by means of highly sophisticated computer programs controlling fairly
automatically the measuring and structure determination process, an X-ray analysis
can be processed with little effort on the part of the user. In general, extensive previous
knowledge of theoretical crystallography is unnecessary; instead, much practical
experience is more helpful for the experimenter to continue his investigation. However,
in spite of automation several sources of error remain for the user, each capable of
preventing a succesful solution to a structural problem.



VIII Preface

It seemed therefore appropriate to have a guide for practical work in X-ray analysis
directed at those who are not highly experienced in crystallography but who need
structure determination as a method for solving some of their problems. In this book
the fundamentals of crystallography are presented together with those topics that are
helpful for the execution of a structure analysis. The contents were selected with
respect to practical applicability ; most questions arising in the course of practical work
are treated. This book is addressed to graduate students intending to use this method in
any part of an examination as well as to scientists in any research or industrial
laboratory, hence to all people concerned with a structural problem which might be
solved by the method of single crystal analysis.

In the first part mainly theoretical aspects are presented. Note that no effort has
been made to derive all results of diffraction theory. This is not the aim of this book
since we are more interested in practical problems. In the second and subsequent parts
we describe the process of an X-ray structure determination in all details, starting with
the diffraction experiments, then dealing with the phase determination, the refinement
and finally with the representation and documentation of results. The presentation of
three structures as examples supports the orientation of this book toward practical
work.

I have tried to give as modern a formulation as possible of the mathematical aspects
that figure so largely in X-ray analysis because the modern mathematical language
seems to be the most appropriate for a clear understanding, despite its somewhat
abstract nature.

It is the aim of this book to serve as a guide and to enable the reader to solve his
structural problems almost without further preparation. It is desired that this book will
be a contribution to the further dissemination of X-ray analysis as a modern method of
structure determination to an ever increasing number of scientists.
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1 Theoretical Basis

1.1 Matrices, Vectors
1.1.1 Introduction

The first part of this chapter is concerned with some mathematics which will be used in
the later chapters of this book. We assume that the fundamentals of arithmetic and of
integral and differential calculus are well-known to the reader, but students of
chemistry often have difficulties with the theory of vector and matrix algebra. Since we
will make frequent use of these mathematical formalisms, the most important
properties of vectors and matrices are briefly discussed.

1.1.2 Matrices, Determinants, Linear Equations

A rectangular array, A, arranged in the form

a3 A4y A13 ... Ay,
Q31 833 A3 ... Ay,
A= A3; Q433 A3z ... 3z,
aml a'1112 am3 amn

is called a matrix. The elements a;, can be arbitrary numbers. If the number of rows is
m and the number of columns is n, the matrix is said to be of the orderm x n. If m = n
the matrix is called a square matrix of order n. The index i of the element a,, indicates
its row and the index k the corresponding column. As will be shown in the next chapter,
the matrix formalism is a very convenient way to describe vector operations, vector
transformations and it provides a very elegant method for solving linear equations.

The introduction of matrices requires a knowledge of matrix algebra. First, we
define the basic arithmetic operations of matrices.

The equality of matrices. Two matrices are said to be of equal type if their numbers of
rows and columns are equal. Two matrices are equal, if they are of equal type and if all
elements in corresponding rows and columns are equal.

Example:
(a) The matrices
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4 0 4 0
A (0 1) an (1 0)

are of the same type. They are square matrices of order 2. But they are not equal. For
instance, the element in the second row and first column a,, is equal to zero and is not
equal to by; = 1.

(b) The matrices

4 0 220
and o] areequal.
0 1 0 ¢

Now we can proceed to the algebraic operations. If A = (a;,), B = (b, ) are matrices
of the same type, the matrix C = (c;,) is called the sum (difference) of A and B,

C =A+B
if

Ci = &y £ by, (1.1
It can be clearly seen that C must be of the same type as A and B, and that the

calculation of a sum or difference is impossible if A and B are of different types.
The product /A of a matrix A = (a;) with a single factor 4 is defined by

Aagy;  Aay, ... Aag,

AA — ﬁ.azl 1322 . }\.azn

Adg, Aan, ... Adag,
Example:
(a) Given

2 3 —
A:( ) B 1 1 1’
-3 2 —1 1 —1
calculate A — (1/2)B.

Answer . This calculation is impossible, because A and B are of different type. If we
change

1 —1
BtoB = )
—1 1

we obtain

A—U@R=< @-um@+na>

-3 -1/2)2-1/2)
(b) Let
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A (? b E_ 1 0>
\¢c d ~\0 1
and / an arbitrary constant. Calculate B=A — AE.

Solution :

_(la=4) b
B‘( c (d—,l)>’

The product of two matrices is not as simple an operation as that of the sum and
difference. Let A = (a,,) be a matrix of order m x n, B = (b;,) a matrix of order n x p.
The m x p matrix, C = (c;,) is said to be the product of A and B,

C=AB
if
Cix = Z a;, bk
e=1
for
i=1,...,m and k=1,...,p (1.2)

The definition of the matrix product is not self-evident and at this stage no simple
reason for this extraordinary operation can be given. It can only be stated that a large
number of important operations can be expressed by way of matrix products in a very
clear and simple way.

Let us give an explanation of (1.2) which may be somewhat clearer. The element c;,
of the product matrix C is obtained by multiplication of the elements of the i-th row of
A by the corresponding elements of the k-th column of B followed by summation of the
n products. A stringent requirement for this procedure is that the length of rows of the
first matrix is equal to the length of columns of the second. That is, if A has n columns,
B must have n rows, otherwise the product is not defined.

Problem :

(a) LetP(xy,y,) bean arbitrary point in a plane, with (x,,y,) its cartesian coordinates.

Show that the rotation of P about an angle ¢ can be expressed by a special matrix.
(b) Show that the rotation about ¢ followed by a rotation about w can be expressed

by a matrix product.

Answer:
(a) Asshown in Fig.1.1, we solve the problem by rotating the x — y system about the

same angle ¢. In the new x,, — y,, system the point P has the coordinates x, = OC and
¥, = P’C which are of course equal to x, and y,. Then we have (see Fig.1.1)

x’=a=O_B—E=@—ﬁ=xocosm—yosin(p

y = AP’ =AD + DP’' = BC + DP’ =XoSing + yycos¢
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x

Fig.1.1. Rotation of a point P about an angle ¢.

If we now write (x',y") and (Xq,Ye) as 2 x 1 matrices, we get
X’ cos —sin X
()= G ") G2 a»
y sin ¢ cosp,/) \Y,
and the matrix

Alp) = (cosqo — sin(p)

sin ¢ cos @

represents the rotation about the angle ¢.
(b) From the rotation of P’ by the angle w» we get P (x”,y”) and (x”,y") are
obtained by

X" =x"cosw — y’sinw
y'=x"sinw + y' cosw.
With the expressions of (a) for x” and y* we have then

X" = (X, CO8 @ — Yo Sing) cosw — (X, Sin@ + y,cos@) sinw
vy’ = (XpC08¢ — y,sing) sinw + (X,8ing + y,cos@)cosw
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or
x” = (coswcosg — sin@sing) x, + (—coswsin@ — sinwcos )y,
y” = (sinwcos@ + cosmsing) x, + (— sinwsin@ + cosw cos @) y,

The last two equations become quite simple when written as matrix product:

X"\  (cosw —sinw <cos¢) —sin (p) (x())
v’/ \sinw cosw sin @ cose/ \Y¥o
By evaluating the last matrix product you get the expressions developed above.
On the other hand we get from multiple angle formulae

COSwWCosS@ — Sinw sing = cos{w + @)
—(cosw sing + sinwcose) = —sin(w + @)

sinwcosg + cosw sing = sin(w + ¢)

—sinw sing + coswcosg = cos(w + @)

Hence we get

(’y‘:) =A(w+9) (") or A(@+0) = A()A(9).

Yo

Some properties of the arithmetic operations of matrices are as follows:

() A+B=B+A

2QA+B+C=A+B+0O

(3) A(A+B)=/A+ B

@) p(AA)y= @A

5) (u+ DA =pA + iA

(6) (AB)C=A(BQO)

(MHYAB+C)y=AB+ AC

(8) In general, the matrix product is not cummutative, that is, AB & BA (the reader
may show this by an example).

Special matrices are as follows:

(a) A matrix O with all elements being equal to zero is called a null matrix. It has the
property A + O =0 + A = A for all matrices A of the same type.

(b) A square matrix E = (e;,) with e;, = 4,, (Kronecker symbol) is called a unit
matrix. It has the property EA = AE = A for all square matrices of the same order.

(c) For a given matrix A = (a;,), its transposition matrix A’ is defined by

a5, a3 ... a,,
A =(a,) = 12 A3 ... Ay
1
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A’ is obtained by reflection of the elements of A across the principal diagonal, which is
defined by the elements a,,, a,,, ... a; ... etc.

(d) For a given square matrix A the matrix B is called the inverse matrix of A, if BA
=E. B is then denoted by B=A""

The problem of how to find the inverse matrix of A is very important, but its solution
is not trivial. Let us demonstrate the importance of the inverse matrix by an example:

A system of n linear equations is of the form

a5, Xy +ay2X +...8;,X, =by
431Xy +832%X; + ... 85,X, =Dy (1.4)

a,; Xy + anZXZ + ... anan = bn

In matrix notation, with

b, X1
A=(ay),b=| - ]|, x={ : |
b, X,
we obtain
Ax=Db.

If we were able to calculate the inverse matrix, we could have immediately the
solution for x,

x=A"1b.

The example shows that there is a close connection between the solution of n linear
equations and the calculation of the inverse matrix and we shall see that the procedure
of solution is the same for both problems. Before starting this, we must define a
determinant.

Let A = (a;) be a square matrix of order n. Let us denote by A, the matrix obtained
from A by deleting the i-th row and k-th column:

a5, -- 0 A k-1 Ay k+1 cee o Agg
A-1,1 -0 Ay di-1,x+1 -+ -1,
A =
ik A1, -0 Aypgk—1 i1,k+1 -0 Q41
an1 see o Bpk—1 Ank+1 EEIE - ¥

A, is then of order n — 1.
Let

A=(311 a12>
A1 A4y
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a square matrix of order 2. Its determinant |A| is a number obtained from A by
|Al=ay185;, — a1y,

The determinant of a square matrix of higher order is defined iteratively:
Let A = (a;) be a square matrix of order n. Its determinant |A| is defined by

n

A= Z (D' a A,
k=1
This expansion is done with respect to the first row. It can be shown that the expansion
is independent of our choice of the row; furthermore it can be done referring to a
column. This property is expressed by the Theorem of Laplace:
The determinant |A| of a square matrix A = (a, ) is given by

|A|= Y (—1)"*ay |A,|for arbitrary i=1,...,n
k=1
or (1.5)

|A|= (—1)*ka, |A,|forarbitraryk=1,...,n
i=1

i=

For convenience, the expression (— 1) **| A,, | shall have its own name. It is called the
minor of the matrix element a;, and designated o;,.
With the notation of minors, Laplace theorem reads

n
[Al= 3 ayouy for i=1,....n
k=1
or

n
|Al= ) ajo fork=1,...,n.
i=1
In practice the calculation of a determinant of higher order is a joyless task. There is
some help from the rules for the arithmetic of determinants, but we shall not describe
them because in the progress of a structure analysis the calculation of the determinants
is done by the computer and at most we ourselves calculate determinants of order two
or three.
The application of all these rules for determinant arithmetic leads to an important
generalization of the Laplace theorem:

Generalized Expansion Theorem: Let A be a square matrix of order n. Then for its
determinant the following equations hold:

n
[Al Ay = z Ay Ui
s=1

R (4, = Kronecker-Symbol)
Al =}, agag

s=1
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For i = k we get the Laplace theorem. Its generalization largely contains the solution
of the inverse matrix problem.

Let us regard a matrix, denoted by A*, containing the minors a,; as elements. Note
that, in A* the usual order of subscripts is exchanged. In A = (a;,) the element a,, is
positioned in the i-th row and k-th column, while in A* the corresponding minor a;, is
in the k-th row and i-th column. The minor matrix A* has the important property, that
AA”*=|A|E holds.

Proof: From the definition of matrix product we get

a5, ... da;, Oyy e Oy

™=

=

Xin 0.4 s

nn

a5 O‘ks)
1

I

a,; a

nn

The sum on the right side is equal to |A | 4,,, from generalized expansion theorem. So
we get

a_ (1A 0
AAT={" " |A] Al =|A[E

Now it is easy to see how to calculate the inverse matrix A~*. It is simply
At =(1/IADAN if|A|+0 (1.6)

For a matrix A with |[A|=0, A~! does not exist!

Problem .
Given
—1 0 1
A= 2 1 —11,
3 -2 0

calculate A~ !,

Solution: The determinant |A|, calculated by expansion with respect to the third col-
umn is

2 1 —1 0
A :1 — _1 =5
Al 13 —2 ( )’ 3 —2‘ .

Since |A]| 40, A™! exists. The minors «;, are then

1 -1 5 2 —1
(x = == — = — =
11 _» 0 %12 3 0
2 1 7 0 1
o — = — /" = — = —
R I Q) Ty o770



