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Preface

As materials polymers are almost always used as “solids”. A structural and
dynamic characterization of the polymers in question is necessary in order to
understand the relations between properties and structure and, on the basis of
these relations, to design new polymer materials. As is well known, the X-ray
diffraction method has contributed to the structural determination of polymers
with high crystallinity. However, most polymers have low crystallinity and
so structural information about the noncrystalline region, which is the major
component, cannot be obtained by X-ray studies. Therefore, the X-ray diffraction
method has a limitation for the structural analysis of such systems. Further, it
can be said that chain segments in the noncrystalline region are sometimes in
a mobile state, so that the X-ray diffraction method provides no structural or
dynamical information. On the other hand, the solid state NMR method provides
information about the structure and dynamics of a sample irrespective of whether
the region studied is crystalline or noncrystalline.

Recently, high resolution NMR studies of solids have been realized by using
advanced pulse and mechanical techniques, and so have provided a variety of
structural and dynamic information about polymer systems. Further, it can be
said that solid state NMR has provided characteristic information that cannot be
obtained by other spectroscopic methods, and that it has become a very powerful
means for elucidating the structure and dynamics of polymer systems.

In polymer science and technology, the advanced development of various
polymer materials with ideal properties and functions is desired. To achieve
this, the close relationship between physical properties and molecular structure
and dynamics must be clarified precisely. Therefore, powerful techniques are
required for the elucidation of this relationship. One of these is solid state
NMR spectroscopy.

This book is divided into two parts: the basic principles of solid state NMR
and its application to polymer systems in the solid state. In the former part,
the principles of NMR, important NMR parameters such as chemical shifts,
relaxation times, dipolar interactions, quadrupolar interactions, pulse techniques
and new NMR methods are covered. In the latter part, applications of NMR
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to a variety of polymer systems in the solid state are discussed. The book is
intended for graduate students and researchers in academic environments. It
provides information relevant to beginners as well as those who are experts in
solid state NMR applied to polymer science and technology, materials science,
chemistry, biochemistry, physics, and so on.

We are delighted that so many active authors, who are leaders in the field of
NMR spectroscopy and polymer characterization, have contributed to this work.
We hope this book will be welcomed by the widespread NMR community and
that all readers, from beginner to expert, everywhere will find the details of the
various techniques and applications helpful.

Isa0 ANDO
TETSUO ASAKURA
July, 1997
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Introduction

Polymers generally form a variety of primary, secondary and higher-order
structures in the solid state. This comes from the characteristic fact that a
polymer chain is formed from an extremely large number of bonds and has
sometimes irregular configurational structure and regiostructure. Due to such
structural features some regions are found to be in the crystalline state and
some in the noncrystalline state. In the former region, polymer chains are
aligned like crystals and, on the other hand, in the latter region, they are
randomly irregular in structure with and without molecular motion. The
existence of these polymer structures is closely associated with their proper-
ties. For this reason, it becomes important to carry out precisely both struc-
tural and dynamic characterizations.

It has been demonstrated that solid state NMR spectroscopy provides
useful information about the structure and dynamics of polymers in the bulk.
At present, in polymer science, solid state NMR is recognized as one of the
most powerful means for elucidating the structure and the dynamics of solid
polymers in addition to X-ray diffraction. The history of solid state NMR,
which has been used in polymer science, is very old. The appearance of new
techniques in solid state NMR has certainly contributed to the development
of polymer science and technology.

From such a background, the principles of solid state NMR and its appli-
cations to structural and dynamic characterization of polymers will be de-
scribed.

Previously, many excellent books and periodical monographs on funda-
mental NMR and advanced NMR spectroscopies, have appeared. Also some
excellent books of solid state NMR of polymers have appeared. Some of
these books are mentioned for the convenience of readers below [1, 2].
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Chapter 1

NMR Chemical Shift and Electronic Structure

Isao Ando!, Naoki Asakawa® and Graham A. Webb?®

'Department of Polymer Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku,
Tokyo, Japan; *Department of Biomolecular Engineering, Tokyo Institute of Technology,
Nagatsuda, Yokohama, Japan, and *Department of Chemistry, University of Surrey,
Guildford, Surrey, UK

1.1 Introduction

High-resolution solid-state NMR spectroscopy, combined with quantum
chemistry, provides detailed information on the structure and electronic struc-
tures of solid polymers through the observation of the NMR chemical shift
[1].

In the liquid and solution states, NMR chemical shifts of polymers are
often the averaged values for all of the possible conformations because of
rapid interconversion by rotations about bonds. However, in the solid state,
chemical shifts are often characteristic of specific conformations because of
strongly restricted rotation about the bonds. The NMR chemical shift is
affected by a change of the electronic structure arising from structural
changes. NMR chemical shifts in the solid state provide, therefore, useful
information about the electronic structure of a polymer or polymers with a
fixed structure. Furthermore, in the solid state, the components of the full
chemical shift tensor can often be determined. The complete chemical shift
tensor provides information on the local symmetry of the electron cloud
around the nucleus and so provides much more detailed knowledge of the
electronic structure of the polymer compared with the average chemical shift
associated with the structure.

Such a situation applies to many polymers and, in order to establish the
relationship between the NMR chemical shift and the electronic structure of
polymers, it is necessary to use a sophisticated theoretical method which
takes account of the characteristics of polymers.

Some methodologies for obtaining structures and the electronic structures
of polymers, both in the solution and solid state, involve a combination of
the observation and calculation of NMR chemical shifts. This approach has
been applied to various polymer systems. Theoretical calculations of NMR
chemical shifts for polymer systems have been achieved using two main
approaches. One approach is that model compounds, such as the dimer,
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trimer, etc., as a local structure of polymer chains, are used in the calculation
by combining quantum chemistry and statistical mechanics. In particular, this
approach has been applied to polymer systems in solution [2]. However, in
solid polymer systems it should be recognized that the results of quantum
chemical calculations on model compounds are not readily transferable to
polymers because of differences in the electronic structure, including long-
range interactions such as intrachain and interchain interactions. Electrons
are constrained to a finite region of space in small molecules but this is not
necessarily the case for polymers and, hence, some additional approaches
are required. Another approach is to employ the tight-binding molecular
orbital (TB MO) theory, which is well known in the field of solid-state
physics, to describe the electronic structure of linear polymers with periodic
structure within the framework of the linear combination of atomic orbitals
(LCAO) approximation for the electronic eigenfunctions [3-11]. These ap-
proaches lead to the determination of the spatial structure and/or electronic
structure of polymer systems including polypeptides in the solution and solid
state. The essence of these two approaches are described below.

1.2 Approach using model compounds
1.2.1 The origin of NMR chemical shift

The chemical shift of an atom depends on its electronic and molecular enviro-
ments [12]. Note that the chemical shift relative to a standard reference is
expressed by & and the chemical shielding by o. The chemical shielding o
for atom A can be estimated by the sum of the following terms:

oa=0"+ 0P+ o', (1.1)

where o is the diamagnetic term, o is the paramagnetic term and o' is
another term which comes from the magnetic anisotropy effect, polar effect
and ring-current effect. For nuclei with 2p electrons, such as B¢, BN, etc.,
the relative chemical shift is predominantly governed by the paramagnetic
term, and for the "H nucleus by the first and third terms in Equation (1.1).

The paramagnetic term is expressed as a function of excitation energy,
bond order, and electron density according to the sum-over-states (SOS)
method in the simple form as follows:

oP = —CZ(r *)p(E,.~E,) 'O, (1.2)
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Table 1.1. Calculated '*C chemical shieldings of hydrocarbons by FPT INDO method

Sample Calculated” Experimental®
(ppm) (ppm)
o o’ N 8 (cal)® 8 (exp)
Methane
7.7 —-129.3 —68.0 0 0
CH, 3
Ethane
57. —136. -75.7 7.7 8.0
C.H, 7.4 136.2
Etylens 57.9 ~230.3 ~169.3 101.3 124.9
C,H,

* The negative sign means deshielding.
" Relative to CH,.
¢ Relative to CH,.

where E,,—E, is the singlet—singlet excitation energy from the nth occupied
to the mth unoccupied orbitals, and Q is a factor including the bond order
and electron density. The quantity (r ), is the spatial dimensions for a 2p
electron while C is the coefficient incorporating universal constants. This
term is calculated by semi-empirical MO or ab initio MO methods. The
former has some features which give the substantial aspects of the chemical
shift behavior associated with the spatial structure and/or the electronic
structure. The diamagnetic term is estimated from the calculated electron
density. Using these procedures, the chemical shielding o; of the model
compound with any specified conformation is calculated. For example, the
contributions of the paramagnetic term and diamagnetic term to the relative
3C chemical shifts of small hydrocarbon molecules, such as methane, ethane
and ethylene using the FPT (finite perturbation theory) with the INDO (semi-
empirical MO) method, are calculated as shown in Table 1.1 together with
the experimental data [13]. Note that the negative sign of the shielding
constant o indicates deshielding and, therefore, shielding variations can be
compared with the observed chemical shift § where a positive sign denotes
deshielding. This table indicates that the paramagnetic term predominantly
contributes to the relative '>C chemical shift, and the contribution of the
diamagnetic term is very small. These results show that it is very important
to estimate exactly the paramagnetic term for the chemical shift calculations
of nuclei with 2p electrons.

1.2.2  Medium effects on NMR chemical shifts

Most MO calculations of nuclear shielding relate to the case of a molecule
in a vacuum. For nuclei forming the molecular skeleton, such as '°C, and



