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PREFACE

hen computer software succeeds—when it meets the needs of the people who use

it, when it performs flawlessly over a long period of time, when it is easy to modify
and even easier to use—it can and does change things for the better. But when software
fails—when its users are dissatisfied, when it is error prone, when it is difficult to change
and even harder to use—bad things can and do happen. We all want to build software that
makes things better, avoiding the bad things that lurk in the shadow of failed efforts. To
succeed, we need discipline when software is designed and built. We need an engineer-
ing approach.

It has been almost three decades since the first edition of this book was written. During
that time, software engineering has evolved from an obscure idea practiced by a relatively
small number of zealots to a legitimate engineering discipline. Today, it is recognized as a
subject worthy of serious research, conscientious study, and tumultuous debate. Through-
out the industry, software engineer has replaced programmer as the job title of preference.
Software process models, software engineering methods, and software tools have been
adopted successfully across a broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disciplined
approach to software, they continue to debate the manner in which discipline is to be
applied. Many individuals and companies still develop software haphazardly, even as they
build systems to service today’s most advanced technologies. Many professionals and
students are unaware of modern methods. And as a result, the quality of the software that
we produce suffers, and bad things happen. In addition, debate and controversy about the
true nature of the software engineering approach continue. The status of software engi-
neering is a study in contrasts. Attitudes have changed, progress has been made, but
much remains to be done before the discipline reaches full maturity.

The seventh edition of Software Engineering: A Practitioner’s Approach is intended to
serve as a guide to a maturing engineering discipline. Like the six editions that preceded it,
the seventh edition is intended for both students and practitioners, retaining its appeal as
a guide to the industry professional and a comprehensive introduction to the student at the
upper-level undergraduate or first-year graduate level.

The seventh edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and important
software engineering processes and practices. In addition, a revised and updated “support
system,” illustrated in the figure, provides a comprehensive set of student, instructor, and
professional resources to complement the content of the book. These resources are pre-
sented as part of a website (www.mhhe.com/ pressman) specifically designed for Software
Engineering: A Practitioner’s Approach.

The Seventh Edition. The 32 chapters of the seventh edition have been reorganized into
five parts. This organization, which differs considerably from the sixth edition, has been
done to better compartmentalize topics and assist instructors who may not have the time
to complete the entire book in one term.

XXV
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Part 1, The Process, presents a variety of different views of software process, consider-
ing all important process models and addressing the debate between prescriptive and
agile process philosophies. Part 2, Modeling, presents analysis and design methods with
an emphasis on object-oriented techniques and UML modeling. Pattern-based design and
design for Web applications are also considered. Part 3, Quality Management, presents the
concepts, procedures, techniques, and methods that enable a software team to assess
software quality, review software engineering work products, conduct SQA procedures,
and apply an effective testing strategy and tactics. In addition, formal modeling and veri-
fication methods are also considered. Part 4, Managing Software Projects, presents topics
that are relevant to those who plan, manage, and control a software development project.
Part 5, Advanced Topics, considers software process improvement and software engineer-
ing trends. Continuing in the tradition of past editions, a series of sidebars is used through-
out the book to present the trials and tribulations of a (fictional) software team and to
provide supplementary materials about methods and tools that are relevant to chapter
topics. Two new appendices provide brief tutorials on UML and object-oriented thinking
for those who may be unfamiliar with these important topics.
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The five-part organization of the seventh edition enables an instructor to “cluster”
topics based on available time and student need. An entire one-term course can be built
around one or more of the five parts. A software engineering survey course would select
chapters from all five parts. A software engineering course that emphasizes analysis and
design would select topics from Parts 1 and 2. A testing-oriented software engineering
course would select topics from Parts 1 and 3, with a brief foray into Part 2. A “manage-
ment course” would stress Parts 1 and 4. By organizing the seventh edition in this way,
I have attempted to provide an instructor with a number of teaching options. In every case,
the content of the seventh edition is complemented by the following elements of the SEPA,
7/e Support System.

Student Resources. A wide variety of student resources includes an extensive online
learning center encompassing chapter-by-chapter study guides, practice quizzes, prob-
lem solutions, and a variety of Web-based resources including software engineering
checklists, an evolving collection of “tiny tools,” a comprehensive case study, work prod-
uct templates, and many other resources. In addition, over 1000 categorized Web Refer-
ences allow a student to explore software engineering in greater detail and a Reference
Library with links to over 500 downloadable papers provides an in-depth source of
advanced software engineering information.

Instructor Resources. A broad array of instructor resources has been developed to
supplement the seventh edition. These include a complete online Instructor’s Guide (also
downloadable) and supplementary teaching materials including a complete set of over
700 PowerPoint Slides that may be used for lectures, and a test bank. Of course, all
resources available for students (e.g., tiny tools, the Web References, the downloadable
Reference Library) and professionals are also available.

The Instructor’s Guide for Software Engineering: A Praclitioner’s Approach presents sug-
gestions for conducting various types of software engineering courses, recommendations
for a variety of software projects to be conducted in conjunction with a course, solutions
to selected problems, and a number of useful teaching aids.

Professional Resources. A collection of resources available to industry practitioners
(as well as students and faculty) includes outlines and samples of software engineering
documents and other work products, a useful set of software engineering checklists, a
catalog of software engineering (CASE) tools, a comprehensive collection of Web-based
resources, and an “adaptable process model” that provides a detailed task breakdown of
the software engineering process.

When coupled with its online support system, the seventh edition of Software Engi-
neering: A Practitioner’s Approach, provides flexibility and depth of content that cannot be
achieved by a textbook alone.

Acknowledgments. My work on the seven editions of Software Engineering: A Practi-
tioner’s Approach has been the longest continuing technical project of my life. Even when
the writing stops, information extracted from the technical literature continues to be
assimilated and organized, and criticism and suggestions from readers worldwide is eval-
uated and cataloged. For this reason, my thanks to the many authors of books, papers,
and articles (in both hardcopy and electronic media) who have provided me with addi-
tional insight, ideas, and commentary over nearly 30 years.

Special thanks go to Tim Lethbridge of the University of Ottawa, who assisted me in
the development of UML and OCL examples and developed the case study that accompa-
nies this book, and Dale Skrien of Colby College, who developed the UML tutorial in
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thank the reviewers of the seventh edition: Their in-depth comments and thoughtful
criticism have been invaluable.

Osman Balci, SK Jain,
Virginia Tech University National Institute of Technology Hamirpur
Max Fomitchey, Saeed Monemi,
Penn State University Cal Poly Pomona
Jerry (Zeyu) Gao, Ahmed Salem,
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The content of the seventh edition of Software Engineering: A Practitioner’s Approach
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