Roger S. Pressman

"—v"'t-_'F"’?"—"".J-’? f”‘—'ﬁil ,_,—, s e 2 . R - h

Software Engineering

A PRACTITIONER’S APPROACH

SEVENTH EDITION

Roger S. Pressman, Ph.D.

YR

;;@i F5 E

% Higher Education

Boston Burr Ridge, IL Dubuque, IA New York San Francisco St. Louis
Bangkok Bogota Caracas KualaLumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

The McGraw-Hill companies

% Higher Education

SOFTWARE ENGINEERING: A PRACTITIONER'S APPROACH, SEVENTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New
York, NY 10020. Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Previous editions © 2005,
2001, and 1997. No part of this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including,
but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

This book is printed on acid-free paper.
1234567890DOC/DOCO09

ISBN 978-0-07-337597-7
MHID 0-07-337597-7

Global Publisher: Raghothaman Srinivasan

Director of Development: Kristine Tibbetts

Senior Marketing Manager: Curt Reynolds

Senior Managing Editor: Faye M. Schilling

Lead Production Supervisor: Sandy Ludovissy
Senior Media Project Manager: Sandra M. Schnee
Associate Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
(USE) Cover Image: © The Studio Dog/Getty Images
Compositor: Macmillan Publishing Solutions
Typeface: 8.5/13.5 Leawood

Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Pressman, Roger S.
Software engineering : a practitioner’s approach / Roger S. Pressman. — 7th ed.
p.cm.
Includes index.
ISBN 978-0-07-337597-7 — ISBN 0-07-337597-7 (hard copy : alk. paper)
1. Software engineering. L Title.
QA76.758.P75 2010
005.1—dc22

2008048802

www.mhhe.com

Software Engineering

A PRACTITIONER’S APPROACH

In Ioving memory of my
father who lived 94 years
and taught me, above all,
that honesty and integrity

were the best guides for

my journey through life.

ABOUT THE AUTHOR

oger S. Pressman is an internationally recognized authority in software process

improvement and software engineering technologies. For almost four decades,
he has worked as a software engineer, a manager, a professor, an author, and a con-
sultant, focusing on software engineering issues.

As an industry practitioner and manager, Dr. Pressman worked on the development
of CAD/CAM systems for advanced engineering and manufacturing applications. He
has also held positions with responsibility for scientific and systems programming.

After receiving a Ph.D. in engineering from the University of Connecticut,
Dr. Pressman moved to academia where he became Bullard Associate Professor of
Computer Engineering at the University of Bridgeport and director of the university’s
Computer-Aided Design and Manufacturing Center.

Dr. Pressman is currently president of R.S. Pressman & Associates, Inc., a consulting
firm specializing in software engineering methods and training. He serves as principal
consultant and has designed and developed Essential Software Engineering, a complete
video curriculum in software engineering, and Process Advisor, a self-directed system
for software process improvement. Both products are used by thousands of companies
worldwide. More recently, he has worked in collaboration with Edistalearning in India
to develop comprehensive Internet-based training in software engineering.

Dr. Pressman has written many technical papers, is a regular contributor to
industry periodicals, and is author of seven technical books. In addition to Software
Engineering: A Practitioner’s Approach, he has co-authored Web Engineering
(McGraw-Hill), one of the first books to apply a tailored set of software engineering
principles and practices to the development of Web-based systems and applications.
He has also written the award-winning A Manager’s Guide to Software Engineering
(McGraw-Hill); Making Software Engineering Happen (Prentice Hall), the first book to
address the critical management problems associated with software process
improvement; and Software Shock (Dorset House), a treatment that focuses on soft-
ware and its impact on business and society. Dr. Pressman has been on the editorial
boards of a number of industry journals, and for many years, was editor of the
“Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry
conferences. He is a member of the IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa
Nu, and Pi Tau Sigma.

On the personal side, Dr. Pressman lives in South Florida with his wife, Barbara.
An athlete for most of his life, he remains a serious tennis player (NTRP 4.5) and a
single-digit handicap golfer. In his spare time, he has written two novels, The Aymara
Bridge and The Puppeteer, and plans to begin work on another.

PREFACE

hen computer software succeeds—when it meets the needs of the people who use

it, when it performs flawlessly over a long period of time, when it is easy to modify
and even easier to use—it can and does change things for the better. But when software
fails—when its users are dissatisfied, when it is error prone, when it is difficult to change
and even harder to use—bad things can and do happen. We all want to build software that
makes things better, avoiding the bad things that lurk in the shadow of failed efforts. To
succeed, we need discipline when software is designed and built. We need an engineer-
ing approach.

It has been almost three decades since the first edition of this book was written. During
that time, software engineering has evolved from an obscure idea practiced by a relatively
small number of zealots to a legitimate engineering discipline. Today, it is recognized as a
subject worthy of serious research, conscientious study, and tumultuous debate. Through-
out the industry, software engineer has replaced programmer as the job title of preference.
Software process models, software engineering methods, and software tools have been
adopted successfully across a broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disciplined
approach to software, they continue to debate the manner in which discipline is to be
applied. Many individuals and companies still develop software haphazardly, even as they
build systems to service today’s most advanced technologies. Many professionals and
students are unaware of modern methods. And as a result, the quality of the software that
we produce suffers, and bad things happen. In addition, debate and controversy about the
true nature of the software engineering approach continue. The status of software engi-
neering is a study in contrasts. Attitudes have changed, progress has been made, but
much remains to be done before the discipline reaches full maturity.

The seventh edition of Software Engineering: A Practitioner’s Approach is intended to
serve as a guide to a maturing engineering discipline. Like the six editions that preceded it,
the seventh edition is intended for both students and practitioners, retaining its appeal as
a guide to the industry professional and a comprehensive introduction to the student at the
upper-level undergraduate or first-year graduate level.

The seventh edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and important
software engineering processes and practices. In addition, a revised and updated “support
system,” illustrated in the figure, provides a comprehensive set of student, instructor, and
professional resources to complement the content of the book. These resources are pre-
sented as part of a website (www.mhhe.com/ pressman) specifically designed for Software
Engineering: A Practitioner’s Approach.

The Seventh Edition. The 32 chapters of the seventh edition have been reorganized into
five parts. This organization, which differs considerably from the sixth edition, has been
done to better compartmentalize topics and assist instructors who may not have the time
to complete the entire book in one term.

XXV

XXVi

PREFACE

Support
System for
SEPA, 7/e

Web resources
(1,000+ links)
Reference library
{500+ links)
Checklists
Work product templates
Tiny tools
Adaptable process model
Umbrella activities task set
Comprehensive case study

Power-
point
slides

SEPA
7/e

Industry
comment

Distance
learning

Part 1, The Process, presents a variety of different views of software process, consider-
ing all important process models and addressing the debate between prescriptive and
agile process philosophies. Part 2, Modeling, presents analysis and design methods with
an emphasis on object-oriented techniques and UML modeling. Pattern-based design and
design for Web applications are also considered. Part 3, Quality Management, presents the
concepts, procedures, techniques, and methods that enable a software team to assess
software quality, review software engineering work products, conduct SQA procedures,
and apply an effective testing strategy and tactics. In addition, formal modeling and veri-
fication methods are also considered. Part 4, Managing Software Projects, presents topics
that are relevant to those who plan, manage, and control a software development project.
Part 5, Advanced Topics, considers software process improvement and software engineer-
ing trends. Continuing in the tradition of past editions, a series of sidebars is used through-
out the book to present the trials and tribulations of a (fictional) software team and to
provide supplementary materials about methods and tools that are relevant to chapter
topics. Two new appendices provide brief tutorials on UML and object-oriented thinking
for those who may be unfamiliar with these important topics.

PREFACE xXxvii

The five-part organization of the seventh edition enables an instructor to “cluster”
topics based on available time and student need. An entire one-term course can be built
around one or more of the five parts. A software engineering survey course would select
chapters from all five parts. A software engineering course that emphasizes analysis and
design would select topics from Parts 1 and 2. A testing-oriented software engineering
course would select topics from Parts 1 and 3, with a brief foray into Part 2. A “manage-
ment course” would stress Parts 1 and 4. By organizing the seventh edition in this way,
I have attempted to provide an instructor with a number of teaching options. In every case,
the content of the seventh edition is complemented by the following elements of the SEPA,
7/e Support System.

Student Resources. A wide variety of student resources includes an extensive online
learning center encompassing chapter-by-chapter study guides, practice quizzes, prob-
lem solutions, and a variety of Web-based resources including software engineering
checklists, an evolving collection of “tiny tools,” a comprehensive case study, work prod-
uct templates, and many other resources. In addition, over 1000 categorized Web Refer-
ences allow a student to explore software engineering in greater detail and a Reference
Library with links to over 500 downloadable papers provides an in-depth source of
advanced software engineering information.

Instructor Resources. A broad array of instructor resources has been developed to
supplement the seventh edition. These include a complete online Instructor’s Guide (also
downloadable) and supplementary teaching materials including a complete set of over
700 PowerPoint Slides that may be used for lectures, and a test bank. Of course, all
resources available for students (e.g., tiny tools, the Web References, the downloadable
Reference Library) and professionals are also available.

The Instructor’s Guide for Software Engineering: A Praclitioner’s Approach presents sug-
gestions for conducting various types of software engineering courses, recommendations
for a variety of software projects to be conducted in conjunction with a course, solutions
to selected problems, and a number of useful teaching aids.

Professional Resources. A collection of resources available to industry practitioners
(as well as students and faculty) includes outlines and samples of software engineering
documents and other work products, a useful set of software engineering checklists, a
catalog of software engineering (CASE) tools, a comprehensive collection of Web-based
resources, and an “adaptable process model” that provides a detailed task breakdown of
the software engineering process.

When coupled with its online support system, the seventh edition of Software Engi-
neering: A Practitioner’s Approach, provides flexibility and depth of content that cannot be
achieved by a textbook alone.

Acknowledgments. My work on the seven editions of Software Engineering: A Practi-
tioner’s Approach has been the longest continuing technical project of my life. Even when
the writing stops, information extracted from the technical literature continues to be
assimilated and organized, and criticism and suggestions from readers worldwide is eval-
uated and cataloged. For this reason, my thanks to the many authors of books, papers,
and articles (in both hardcopy and electronic media) who have provided me with addi-
tional insight, ideas, and commentary over nearly 30 years.

Special thanks go to Tim Lethbridge of the University of Ottawa, who assisted me in
the development of UML and OCL examples and developed the case study that accompa-
nies this book, and Dale Skrien of Colby College, who developed the UML tutorial in

xxviii

PREFACE

Appendix 1. Their assistance and comments were invaluable. Special thanks also go to
Bruce Maxim of the University of Michigan-Dearborn, who assisted me in developing
much of the pedagogical website content that accompanies this book. Finally, I wish to
thank the reviewers of the seventh edition: Their in-depth comments and thoughtful
criticism have been invaluable.

Osman Balci, SK Jain,
Virginia Tech University National Institute of Technology Hamirpur
Max Fomitchey, Saeed Monemi,
Penn State University Cal Poly Pomona
Jerry (Zeyu) Gao, Ahmed Salem,
San Jose State University California State University
Guillermo Garcia, Vasudeva Varma,
Universidad Alfonso X Madrid IIIT Hyderabad

Pablo Gervas,
Universidad Complutense de Madrid

The content of the seventh edition of Software Engineering: A Practitioner’s Approach
has been shaped by industry professionals, university professors, and students who have
used earlier editions of the book and have taken the time to communicate their sugges-
tions, criticisms, and ideas. My thanks to each of you. In addition, my personal thanks go
to our many industry clients worldwide, who certainly have taught me as much or more
than I could ever teach them.

As the editions of this book have evolved, my sons, Mathew and Michael, have grown
from boys to men. Their maturity, character, and success in the real world have been an
inspiration to me. Nothing has filled me with more pride. And finally, to Barbara, my love
and thanks for tolerating the many, many hours in the office and encouraging still another
edition of “the book.”

Roger S. Pressman

CHAPTER 1

CONTENTS AT A GLANCE

Software and Software Engineering |1

Requirements Modeling: Scenarios, Information, and Analysis Classes 148

Requirements Modeling: Flow, Behavior, Patterns, and WebApps 186

Testing Conventional Applications 481
Testing Object-Oriented Applications 511

Formal Modeling and Verification 557
Software Configuration Management 584

PART ONE THE SOFTWARE PROCESS 29
CHAPTER 2 Process Models 30
CHAPTER 3 Agile Development 65

PART TWO MODELING 95
CHAPTER 4 Principles that Guide Practice 96
CHAPTER 5 Understanding Requirements 119
CHAPTER 6
CHAPTER 7
CHAPTER 8 Design Concepts 215
CHAPTER 9 Architectural Design 242
CHAPTER 10 Component-level Design 276
CHAPTER 11 User Interface Design 312
CHAPTER 12 Pattern-Based Design 347
CHAPTER 13 WebApp Design 373

PART THREE QUALITY MANAGEMENT 397
CHAPTER 14 Quadlity Concepts 398
CHAPTER 15 Review Techniques 416
CHAPTER 16 Software Quality Assurance 432
CHAPTER 17 Software Testing Strategies 449
CHAPTER 18
CHAPTER 19
CHAPTER 20 Testing Web Applications 529
CHAPTER 21
CHAPTER 22
CHAPTER 23 Product Metrics 613

PART FOUR MANAGING SOFTWARE PROJECTS ¢i5

CHAPTER 24
CHAPTER 25

Project Management Concepts 646
Process and Project Mefrics 666

viii PART TWO CONTENTS AT A GLANCE

CHAPTER 26 Estimation for Software Projects 691
CHAPTER 27 Project Scheduling 721

CHAPTER 28 Risk Management 744

CHAPTER 29 Maintenance and Reengineering 761

PART FIVE ADVANCED TOPICS 735

CHAPTER 30 Software Process Improvement /86
CHAPTER 31 Emerging Trends in Software Engineering 808
CHAPTER 32 Concluding Comments 833

APPENDIX 1 An Introduction to UML 841
APPENDIX 2 Object-Criented Concepts 863
REFERENCES 871

INDEX 889

TABLE OF CONTENTS

Preface xxv
CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 1

1.1 The Nature of Software 3

1.1.1 Defining Software 4

1.1.2 Software Application Domains 7
1.1.3 legacy Software 9

The Unique Nature of WebApps 10
Software Engineering 12

The Software Process 14

Software Engineering Practice 17

1.5.1 The Essence of Practice 17
1:5:2 General Principles 19
Software Myths 21

How It All Starts 24

Summary 25

PROBLEMS AND POINTS TO PONDER 25

FURTHER READINGS AND INFORMATION SOURCES 26

(SN RN

I
1.
1.

@ N O

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 2 PROCESS MODELS 30

2.1 A Generic Process Model 31
2.1.1 Defining o Framework Activity 32
2:1.2 Identifying a Task Set 34
21.3 Process Patterns 35

2.2 Process Assessment and Improvement 37

2.3 Prescriptive Process Models 38

2.3.1 The Waterfall Model 39

232 Incremental Process Models 41

2.3.3 Evolutionary Process Models 42

2.3.4 Concurrent Models 48

2.3.5 A Final Word on Evolutionary Processes 49
2.4 Specialized Process Models 50

2.4.1 Component-Based Development 50

2.4.2 The Formal Methods Model 51

2.4.3 AspectOriented Software Development 52
2.5 The Unified Process 53

2.5.1 A Brief History 54

25,2 Phases of the Unified Process 54
2.6 Personal and Team Process Models 56

2.6.1 Personal Software Process (PSP} 57

2.6.2 Team Software Process (TSP) 58
2.7 Process Technology 59
2.8 Product and Process 60

X TABLE OF CONTENTS

29 Summary 6]
PROBLEMS AND POINTS TO PONDER 62
FURTHER READINGS AND INFORMATION SOURCES 63

CHAPTER 3 AGILE DEVELOPMENT 65

3.1 What Is Agiliye 67
3.2 Agility and the Cost of Change 67
3.3 What Is an Agile Process? 68

3.3.1 Agility Principles 69
3.3.2 The Politics of Agile Development 70
3.3.3 Human Factors 71
3.4 Extreme Programming (XP] 72
3.4.1 XP Values 72
34.2 The XP Process 73
3.4.3 Industrial XP 77

3.4.4 The XP Debate 78
3.5 Other Agile Process Models 80

3.5.1 Adaptive Software Development (ASD] 81

3.5.2 Scrum 82

3.5.3 Dynamic Systems Development Method (DSDM) 84
354 Crystal 85

3.5.5 Feature Driven Development (FDD) 86

3.5.6 lean Software Development (LSD) 87
3.5.7 Agile Modeling [AM] 88
3.5.8 Agile Unified Process (AUP} 89

3.6 A Tool Set for the Agile Process 91

3.7 Summary 91

PROBLEMS AND POINTS TO PONDER 92

FURTHER READINGS AND INFORMATION SOURCES @3

PART TWO MODELING 95

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 96

4.1 Software Engineering Knowledge 97
4.2 Core Principles 98
4.2.1 Principles That Guide Process 98

4.2.2 Principles That Guide Practice 99
4.3 Principles That Guide Each Framework Activity 101
4.3.1 Communication Principles 101
4.3.2 Planning Principles 103
4,3:3 Modeling Principles 105
4.3.4 Construction Principles 111
4.3.5 Deployment Principles 113
4.4 Summary 115
PROBLEMS AND POINTS TO PONDER 116
FURTHER READINGS AND INFORMATION SOURCES 116

CHAPTER 5 UNDERSTANDING REQUIREMENTS 119

3.1 Requirements Engineering 120
52 Establishing the Groundwork 125
52.1 Identifying Stakeholders 125

TABLE OF CONTENTS

5.2.2 Recognizing Multiple Viewpoints 126
5.2.8 Working toward Collaboration 126
524 Asking the First Questions 127

5.3 Eliciting Requirements 128
5.3.1 Collaborative Requirements Gathering 128
5.3.2 Quality Function Deployment 131
5.3.3 Usage Scenarios 132
534 Elicitation Work Products 133

5.4 Developing Use Cases 133

5.5 Building the Requirements Model 138
55.1 Elements of the Requirements Model 139
5.5.2 Analysis Patterns 142

5.6 Negotfiating Requirements 142

57 Validating Requirements 144

5.8 Summary 145

PROBLEMS AND POINTS TO PONDER 145

FURTHER READINGS AND INFORMATION SOURCES 146

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION,
AND ANALYSIS CLASSES 148

6.1 Requirements Analysis 149
6.1.1 Overall Objectives and Philosophy 150
6.1.2 Analysis Rules of Thumb 151
6.1.3 Domain Analysis 151
6.1.4 Requirements Modeling Approaches 153
6.2 ScenarioBased Modeling 154
6.2.1 Creating a Preliminary Use Case 155
6.2.2 Refining a Preliminary Use Case 158
6.2.3 Writing a Formal Use Case 159
6.3 UML Models That Supplement the Use Case 161
6.3.1 Developing an Activity Diagram 161
6.3.2 Swimlane Diagrams 162
6.4 Data Modeling Concepts 164
6.4.1 Data Objects 164
642 Data Attributes 164
6.4.3 Relationships 165
6.5 ClassBased Modeling 167

6.5.1 Identifying Analysis Classes 167
6.5.2 Specifying Attributes 171
6.5.3 Defining Operations 171

6.5.4 Class-Responsibility-Collaborator (CRC) Modeling 173
6.5.5 Associations and Dependencies 180
6.5.6 Analysis Packages 182

6.6 Summary 183

PROBLEMS AND POINTS TO PONDER 183

FURTHER READINGS AND INFORMATION SOURCES 184

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS,
AND WEBAPPS 186

7.1 Requirements Modeling Strategies 186
7.2 Flow-Oriented Modeling 187

Xii

TABLE OF CONTENTS

7.2.1 Creating a Data Flow Model 188
7.2.2 Creating a Control Flow Model 191
7.2.3 The Control Specification 191
7.2.4 The Process Specification 192

7.3 Creating a Behavioral Model 195

7.3.1 Identifying Events with the Use Case 195

7.3.2 State Representations 196
7.4 Patterns for Requirements Modeling 199
7.4.1 Discovering Analysis Patterns 200

7.4.2 A Requirements Pattern Example: Actuator-Sensor

7.5 Requirements Modeling for WebApps 205
7.5.1 How Much Analysis Is Enoughe 205
L2 Requirements Modeling Input 206
7.53 Requirements Modeling Qutput 207
7.54 Content Model for WebApps 207
7:5.8 Inferaction Model for WebApps 209
7.5.6 Functional Model for WebApps 210

7.57 Configuration Models for VWebApps 211

7.5.8 Navigation Modeling 212
7.6 Summary 213
PROBLEMS AND POINTS TO PONDER 213
FURTHER READINGS AND INFORMATION SOURCES 214

CHAPTER 8 DESIGN CONCEPTS 215

200

8.1 Design within the Context of Software Engineering 216

8.2 The Design Process 219

8.2.1 Software Quality Guidelines and Attributes 219

8.2.2 The Evolution of Software Design 221
8.3 Design Concepts 222

8.3.1 Abstraction 223

8.3.2 Architecture 223

8.3.3 Patterns 224

8.3.4 Separation of Concerns 225

8.3.5 Modularity 225

8.3.6 Information Hiding 226

8.3.7 Functional Independence 227

8.3.8 Refinement 228

8.3.9 Aspects 228

8.3.10 Refactoring 229

8.3.11 ObjectOriented Design Concepts 230

8.3.12 Design Classes 230
8.4 The Design Model 233

8.4.1 Data Design Elements 234
8.4.2 Architectural Design Elements 234
8.4.3 Interfoce Design Elements 235

8.4.4 Componentlevel Design Elements 237
8.4.5 Deployment-level Design Elements 237
8.5 Summary 239
PROBLEMS AND POINTS TO PONDER 240
FURTHER READINGS AND INFORMATION SOURCES 240

TABLE OF CONTENTS

CHAPTER 9 ARCHITECTURAL DESIGN 242
Q.1 Software Architecture 243
Q.1.1 What Is Architecturee 243
9.1.2 Why Is Architecture Importante 245
Q.1.3 Architectural Descriptions 245
914 Architectural Decisions 246

Q.2
9.3

9.4

95

Q.6

Q.7

Architectural Genres 246
Architectural Styles 249

Q.3.1
Q.3.2
9.3.3

A Brief Taxonomy of Architectural Styles
Architectural Patterns 253
Organization and Refinement 255

Architectural Design 255
Representing the System in Confext 256

Q.41
Q.4.2
Q4.3
Q4.4

Q.51
Q.52
9.5.3

Q.6.1
Q.6.2

Defining Archetypes 257

250

Refining the Architecture into Components 258
Describing Instantiations of the System 260
Assessing Alternative Architectural Designs 261

An Architecture Trade-Off Analysis Method 262

Architectural Complexity 263

Architectural Description languages 264
Architectural Mapping Using Data Flow 265

Transform Mapping 265
Refining the Architectural Design 272

Summary 273
PROBLEMS AND POINTS TO PONDER 274
FURTHER READINGS AND INFORMATION SOURCES 274

CHAPTER 10 COMPONENT-LEVEL DESIGN 276
10.1 What Is a Componente 277
10.1.1 An ObjectOriented View 277
10.1.2 The Traditional View 279
10.1.3 A ProcessRelated View 281
10.2 Designing ClassBased Components 282
10.2.1 Basic Design Principles 282
10.2.2 Componentlevel Design Guidelines 285
10.2.3 Cohesion 286
10.2.4 Coupling 288
10.3 Conducting Componentlevel Design 290
10.4 Componentlevel Design for WebApps 296
10.4.1 Content Design af the Component level 297
10.4.2 Functional Design at the Component Llevel 297
10.5 Designing Traditional Components 298
10.5.1 Graphical Design Notation 299
10.5.2 Tabular Design Notation 300
10.5.3 Program Design language 301
10.6 ComponentBased Development 303
10.6.1 Domain Engineering 303
10.6.2 Component Qualification, Adaptation, and Composition 304
10.6.3 Analysis and Design for Reuse 306
10.6.4 Classifying and Retrieving Components 307

