QL ASSEMBLY
LANGUAGE
PROGRAMMING

Colin Opie

QL Assembly Language
Programming

Colin Opie

McGRAW-HILL Book Company (UK) Limited

London - New York - St Louis - San Francisco - Auckland - Bogota
Guatemala - Hamburg - Johannesburg - Lisbon - Madrid

Mexico - Montreal - New Delhi - Panama - Paris - San Juan

Sao Paulo - Singapore - Sydney - Tokyo - Toronto

iii

Published by
McGRAW-HILL Book Company (UK) Limited
MAIDENHEAD - BERKSHIRE - ENGLAND

British Library Cataloging in Publication Data

Opie, Colin
QL assembly language programming.
1. Sinclair QL (Computer) — Programming
2. Assembling (Electronic computers)
I. Title
001.64°2 QA76.8.5625

ISBN 0-07-084777-0

Library of Congress Cataloging in Publication Data

Opie, Colin
QL assembly language programming.

Includes index

1. Sinclair QL (Computer) — Programming. 2. Assembler language
(Computer program language)

I. Title. II. Title: Q.L. assembly language programming.

QA 76.8.86216065 1984 001.64’2 84-21796

ISBN 0-07-084777-0

Copyright © 1984 McGraw-Hill Book Company (UK) Limited. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of McGraw-Hill Book
Company (UK) Limited with the exception that the program listings may be
entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

12345 BBP 8654

iv

PREFACE

The microelectronic evolution recently spawned a uniquely cost
effective, yet inherently powerful, microcomputer system - the Sinclair
QL. This microcomputer is indeed unique, and certainly a 'first' in its
breed. Enclosed in the slender black light-weight case is a member of
the 68000 family of microprocessors (one of the most advanced processors
currently widely available). The QL provides true 32-bit processing, a
suite of specially designed state-of-the-art logic arrays, 128K of RAM,
a multi-tasking operating system kernel, two Microdrives for backup
storage, and a range of I/0 facilities including local area networking
ports. What makes this system unique, apart from the actual electronics,
is the fact that it costs no more, and in many cases much less, than its
rival 8-bit microcomputers.

The Sinclair QL comes equipped with a powerful, and truly extensible,
'SuperBASIC'. One important feature of this extensibility is that 68000
machine code routines may be written and merged into SuperBASIC in order
to enlarge the variety of commands available. Of course, there is also
the option of writing whole application programs in 68000 code, hence
obtaining a maximum speed advantage during the running of the package.

This book is about 68000 assembly language programming on the Sinclair
QL. There are many good general texts on 68000 programming and there is
little point in reproducing such material here. The emphasis is
therefore: 'Assuming I have a detailed text on 68000 instructions and
their operation, how can I use the Sinclair QL to gain expertise and
create useful assembly language programs to run on it?' It is hoped that
such an emphasis has given rise to a vital and informative book that is
suitable for general programmers, industrial and educational training
institutions, and also for OEM design engineers, all of whom may come to
use the Sinclair QL. Even though detailed information on each of the
68000 instructions is not included, Chapters 1 and 2, and Appendix A,
will go a long way to meeting most needs in this area,

Such a text as this would not be complete unless it could provide
sound, practical experience of the theory presented. To this end a full
screen-orientated program editor and 68000 assembler/loader package has
been developed to complement this book. As will be seen from Part 4 of
this book (which describes in detail the operation of the software) the
package supports a full 68000 assembler development environment. The
actual assembler, for example, provides features normally found only in
rather more expensive minicomputer-based versions. The software is
available separately on a Microdrive cartridge. Another cartridge is
available which holds the source code for all the programs and major
subroutines listed or referred to in the text.

My sincere thanks to John Watson, Tom Blackall, Liz Nemecek, and Jenny
Wright for their help in the production of this book. Special thanks g0
to Tony Tebby for his invaluable technical advice and support, without
which this book could not have been written. As ever I remain totally
grateful to my wife whose patience and support seem ever increasing.

Colin N. Opie
July 1984

ACKNOWLEDGEMENTS

The following names and trade marks are the property of SINCLAIR RESEARCH
LIMITED, and are used by kind permission: QL, QDOS, Microdrive, ZX
Microdrive, SuperBASIC, Microdrive cartridge, ZX, Spectrum, ZX Spectrum, ZX
Net, QLUB.

The following names are registered trade marks of Psion Ltd.: Quill, QL Quill,
Abacus, QL Abacus, Easel, QL Easel, Archive, QL Archive.

CONTENTS

Preface

Introduction

Chapter 1
Chapter 2

Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

Chapter 9

Chapter 10
Chapter 11
Chapter 12

Chapter 13
Chapter 14

PART 1 The 68000 MPU

The 68000 processor
68000 instructions and addressing modes

PART 2 QL System Procedures

The QDOS package

Machine resource management (Trap #1)
Input/output allocation (Trap #2)
Input/output operations (Trap #3)
Utility routines

Linking into SuperBASIC

PART 3 Programming Examples

Simple executable programs
Graphics

Extending SuperBASIC
File handling

PART 4 The Assembler/Editor

Using the editor
Assembler operation

APPENDICES

A. 68000 instruction set

B. QL system calls

C. Error codes

D. Editor/assembler quick reference guide

Index

44
51
77
83
149
180

196
204
214
228

236
244

258
262
266
267

269

INTRODUCTION

'One of the pleasantest things in the
world is going a journey; ...'
William Hazlitt

In this book we are going to embark on a journey into the operating
environment of the Sinclair QL microcomputer. The excursion will hold
many new experiences for most travellers, and there is much to stretch
the imagination and inventiveness of everyone. The operating environment
of the Sinclair QL 1is based upon a kernel of procedures collectively
known as QDOS. In addition to QDOS there is a set of utility routines
which may be entered via well-defined vectors in ROM, These QDOS
procedures and general wutilities provide the assembly language
programmer with a wealth of support ranging from simple character output
to floating point arithmetic. The main processor in the Sinclair QL is a
Motorola MC68008. This new generation 16-bit processor offers extremely
good architectural features. A direct, yet large, memory address space
is provided together with a highly consistent instruction set. This book
is about the use of this instruction set within the architecture of the
Sinclair QL.

The package tour

As this text is specifically aimed at the assembly language programmer
it makes sense to look at the general architecture of the 68000
processor, 1its addressing modes, and the operation of its instructions.
These topics will be covered in Part 1. A detailed discussion of each of
the 68000 instructions is not given for two reasons. First, such an
inclusion would make this text . unnecessarily 1large and expensive,
Second, there are a number of suitable texts readily available (e.g.,
Kane,G., Hawkins,D., and Leventhal,L.: '68000 Assembly Language
Programming', Osborne/McGraw-Hill, 1981). The emphasis in the
appropriate chapters of this book is to provide a concise 68000
companion.

Part 2, comprising Chapters 3 to 8, describes in detail the QDOS and
utility procedures. These procedures are the building blocks for the
assembly language programmer's own application programs. Chapter 8
describes the options available when actually loading and running a
machine code program, as well as how machine code procedures may be
added to SuperBASIC in order to extend the language.

Part 3 contains four chapters of program examples. Chapters 9 and 10
give examples of stand-alone executable programs. Chapter 9 contains a
number of utility programs and Chapter 10 deals with graphics. Chapters
11 and 12 give examples of programs which extend the SuperBASIC
language. Chapter 11 contains some general wutility procedures and

Chapter 12 concentrates on Microdrive file handling. The programs given
are full implementations and useful, not simply as utilities, but also
as examples of 'how to get the code loaded and executed'.

Part 4 describes the full screen editor and assembler/locator package
used to create the assembly language programs given in Part 3, The
programs within the package are easy to use and provide a professional
approach to assembly language programming on the Sinclair QL. Finally, a
number of appendices exist to provide quick reference guides for
commonly required information.

Getting started

Exactly how you use this book will depend upon your current expertise in
assembly language programming. It 1is assumed that you have a basic
understanding of the techniques of assembly language programming, and
are familiar with terms such as registers, addressing modes, stack
pointers, and so on. If you already write a fair amount of assembly
language code for some other processor (e.g., 280 or 6502), you will be
in a good position to start programming your Sinclair QL very soon. For
those of you who aliready know 68000 assembly language, Part 2 of the
book will probably be your starting point.

If you do know the assembly language of some other processor but are
unfamiliar with the 68000, Chapters 1 and 2 and Appendix A will give you
a good 1insight into what the 68000 1is capable of. As mentioned
previously, another suitable text will be required should you desire to
look at detailed accounts of each of the 68000 instructions. Once you
are happy with the overall design and the capabilities of the 68000,
full use can be made of Part 2 in order to actually write, load, and
execute an assembly language program.

Whetting the appetite

Assembly language programming on the QL is best performed using a proper
assembler package. Programs developed in this way would normally be
merged into SuperBASIC as an extension, or run as a separate machine
code program by using the EXEC command (see Chapter 8). Very simple
machine code programs can be loaded into memory and accessed through the
CALL command, this being the approach adopted here simply to whet your
appetite a little!

Figure 1 1is a listing (output by the McGraw-Hill assembler described
in Part 4) of an assembly language version of the SuperBASIC RECOL
command. This command accepts a screen channel number followed by eight
colour parameters:

RECOL #n, cl, c2, c3, c4, c5, cb, c7, c8
Each colour parameter defines the new pixel colour for the current

respective colour: black, blue, red, magenta, green, cyan, yellow, and
white. To rewrite this procedure in assembly language for use with the

CALL statement, it 1s necessary to know how parameters are passed
across. Chapter 8 shows that up to 13 parameters may be passed, and that
they will be passed over as long-words in the 68000 registers D1 to D7,
and AO to A5 (in that order). Our example requires nine parameters and
they will, therefore, be passed over in registers Dl to D7, and AO to
Al. Tt is also necessary to know how the respective QDOS routine should
be set wup. The routine that we are interested in is SD.RECOL (TRAP#3,
DO=$26). A full description of this QDOS procedure will be found in
Chapter 6. Let us now see how the program in Fig.l evolved.

Demo Program McGraw-Hill 68000 Ass v1.0A Page: 0001

*H Demo Program

.
’

00030000 org $30000

A short assembly language demonstration
program. Used in conjunction with SuperBASIC.
Copyright (c) 1984 McGraw-Hill(UK)

QL wes v wo ws ws ws

00030000 45FA0036 emo: lea data(pc),a2 ;Find buffer
00030004 15420000 move.b d2,0(a2) ;Store table
00030008 15430001 move.b d3,1(a2)
0003000C 15440002 move.b d4,2(a2)
00030010 15450003 move.b d5,3(a2)
00030014 15460004 move.b d6,4(a2)
00030018 15470005 move.b d7,5(a2)
0003001C 3408 move.w a0,d2
0003001E 15420006 move.b d2,6(a2)
00030022 3409 move.w al,d2
00030024 15420007 move.b d2,7(a2)
00030028 224A move.l a2,al ;Set data ptr.
0003002A 363C0000 move.w #0,d3 ;Timeout=0
0003002E 2041 move.l d1,a0 ;Channel
00030030 103C0026 move.b #$26,d0 ;RECOLOUR
00030034 4E43 trap #3
00030036 4E75 rts

;Workspace
00030038 00 data: defb 0

defs 20

end
Symbols:
00030038 DATA 00030000 START

0000 error(s) detected

Figure 1 Assembly language version of RECOL

The QDOS procedure requires the eight colour parameters to be set up
in a byte table. This means that we have to transfer the contents of the
appropriate registers to a small data area. To do this we find out where
the data area exists physically for this particular program, and then
use byte indexed addressing to perform the transfers. But you say: 'We
know where the data area is; it's at $00030038'. In a sense this is true
because the program ORG statement has forced this to be the case, but
most machine code programs in the QL need to be relocatable. The program
shown in Fig.2 is a SuperBASIC program which uses the above machine code
routine. When requesting space for the machine code (by using the RESPR
command) we do not know, in advance, where SuperBASIC will allocate it.
In the example shown we simply asked for 70 bytes to be reserved, and
SuperBASIC returned the base address (in variable 'mc') of such an area.
Our machine code must work, then, wherever it is put! The LEA
instruction found at the beginning of the assembly language program is
being used in its 'Program Counter Relative with Displacement' mode, and
will store the true absolute position of the beginning of the data area
into the designated address register. A detailed discussion of this
addressing mode, together with the appropriate assembler syntax (for the
McGraw-Hill assembler) will be found in Chapter 2.

Once all the colour parameters have been stored in the data table, it
is a simple matter of setting up the appropriate registers for the QDOS
call and then executing the TRAP#3 instruction, A final RTS instruction
will effect a return to SuperBASIC.

Now let us look at the SuperBASIC program, shown in Fig.2. The program
starts by drawing three circles of varying colours. Two of the circles
are filled and the third circle is simply an outline. The next operation
performed is the storing of the machine code routine into a reserved
area of memory. The program is 56 bytes long and therefore a reserved
area of 70 bytes is more than sufficient (because the data buffer need
only be eight bytes long). The DATA statements hold the denary values
corresponding to the hexadecimal instruction opcodes output by the
assembler (shown in Fig.,l, second column from left). Once this
initialization has occurred a small indefinite loop is entered. The loop
causes the screen display of circles to invert its colours every 10
seconds.

In SuperBASIC normal program output goes to channel #l. Our machine
code subroutine requires the channel 'ID' to be passed over as the first
argument in the CALL statement parameter list. You will notice that this
parameter, given in 1lines 170 and 190, is not unity! The SuperBASIC
channel numbers have no direct correspondence to the QDOS channel ID
values. If no reopening of screen channels is performed the actual
correspondence between SuperBASIC screen channels and QDOS channel IDs
is as follows:

SuperBASIC # QDOS ID
HEX. DENARY
0 $00000 0
1 $10001 65537
2 "~ $20002 131074

It is important to remember that the QDOS IDs will alter if you have
reopened a screen channel (e.g., by performing OPEN#1,...). Standard

practice for assembly language programming on the QL would be for
particular channel IDs to be determined by use of a suitable algorithm.
Chapter 11 contains an appropriate routine.

100 REMark Introductory Demonstration Program
120 REMark Copyright (c) 1984 McGraw-Hill(UK)
130 REMark MAIN PROGRAM

140 display_colours

150 mc=RESPR(70): store_mcode

160 PAUSE 200

170 CALL mc,65537,7,6,5,4,3,2,1,0

180 PAUSE 200

190 CALL mc,65537,0,1,2,3,4,5,6,7

200 GO TO 160

220 REMark ROUTINES

230 DEFine PROCedure display_colours
240 INK O: FILL 1: CIRCLE 30,60,15
250 INK 4: FILL O: CIRCLE 60,60,15
260 INK 6: FILL 1: CIRCLE 45,30,15
270 FILL O

280 END DEFine

300 DEFine PROCedure store_mcode

310 RESTORE 350

320 FOR ¢ = O TO 55: READ n: POKE mc+c,n
330 END DEFine

350 DATA 69,250,0,54,21,66,0,0,21,67,0,1
360 DATA 21,68,0,2,21,69,0,3,21,70,0,4
370 DATA 21,71,0,5,52,8,21,66,0,6,52,9
380 DATA 21,66,0,7,34,74,54,60,0,0,32,65
390 DATA 16,60,0,38,78,67,78,117

Figure 2 Demonstration SuperBASIC program

It 1is worth stressing that assembly language programming on the QL is
best performed using a proper assembler package. Programs should
normally be merged into SuperBASIC as extensions to the language, or run
as separate machine code programs (jobs) alongside QDOS; either by using
the SuperBASIC EXEC command, or by using QDOS job creation/activation
procedures. The SuperBASIC CALL command is simple, but very limited, and
should only be used for small demonstration/test routines, or for
performing the initial 1linkage of an extended set of SuperBASIC
procedures.

PART 1 The 68000 MPU

THE 68000
PROCESSOR

At the heart of the Sinclair QL there is a member of the Motorola 68000
family of processors; the Motorola 68008, From a software point of view
the 68008 is a full 68000 implementation. Its major difference 1is that
the device package is smaller, and only caters for an 8-bit data bus. An
effect of this is that the actual throughput of the processor is
reduced, due to overheads in memory addressing. This particular detail
should not deter the QL assembly language programmer, who still has at
his disposal one of the most powerful state-of-the-art 16/32-bit
processors currently available., Also, the 68008 only has 20 of its
maximum 32 address lines brought out to its package pins. This means
that the addressing range is limited to 1 Megabyte (if you can call
1 Megabyte a 'limitation'!). Before going on to see how this processor
may be used within the QL, let us look first at the general features of
the 68000.

1.1 Operating modes

Two distinct operating modes are available with the 68000 processor, The
two modes are called 'user' mode, and 'supervisor' mode. A flag in the
status register will determine which state the processor is in at any
one time. Certain instructions (e.g., STOP) cannot be executed while the
68000 is in user mode, and a privilege violation exception process will
be initiated by the processor if such an execution is attempted.

When the processor is in user mode, the user stack pointer (USP) will
be used by stack related operations. Conversely, the supervisor stack
pointer (SSP) will be used when the processor is in supervisor mode.

1.2 68000 registers

The 68000 has eighteen 32-bit registers and one 16-bit status register
(see Fig.l.1), The 32-bit register set is divided up into eight data
registers, seven address registers, two stack pointers, and a program
counter.

DATA REGISTERS

The eight data registers are labelled DO to D7. Data operations using
these registers may be bit, BCD (nibble), byte, word (16-bit), or
long-word (32-bit) orientated. Within instructions that permit a data
register to be one or more of its operands, any data register may be
used. In effect this means that any data register may be used as an
accumulator, index register, general purpose register, or loop counter.
This is an extremely flexible approach to processor register allocation,
and is one of the reasons why the 68000 1is so easy to program
efficiently.

Data registers Address registers
31 1615 87 0 31 1615 0
I | X
| [Do i A0
— B —
! I DI | Al
- | | — — | —
| | D2 | A2
[| D3 | A3
: : D4 y A4
R R —— I il
I I DS , AS
— | [— —]
‘ | D6 { A6
- | | —
| | D7 3 0
1
usp .
————————————— —’A7
SSP |

3l 0 15 87 0

Program counter Status register

Figure 1.1 68000 internal registers

ADDRESS REGISTERS AND STACK POINTERS

The seven address registers are labelled AO to A6. The two stack
pointers are also treated as address registers and are both labelled A7.
Alternative mnemonics for the two stack pointers are USP (user stack
pointer) and SSP (supervisor stack pointer). A flag in the status
register will determine which state the processor is in (i.e., user or
supervisor) and the respective stack pointer will be wused accordingly.
Operations wusing the address registers are limited to the types word
(16-bit) and long-word (32-bit). In other words, address registers
cannot be the source or destination for bit, byte, or logical
operations. If an address register 1is the destination operand, the
operation will always be long-word, and the source will be sign
extended, if necessary, before use. The address registers are normally
used for manipulating and holding addresses rather than data. They may
be used also as index registers.

Note that, because the stack pointers are in fact the address register

A7, any legal addressing mode for instructions using address registers
will also be legal for the stack pointers. This means that stack pointer
register addressing modes for the 68000 are much more versatile than for
many other processors.

STATUS REGISTER

The 68000 status register is a 16-bit register split into two distinct
bytes. The two bytes correspond to the system status byte (bits 8 to 15)
and the user status byte (bits O to 7). The system status byte can only
be modified when the processor is in supervisor mode. Two mnemonics are
allocated to the status register. First, there is CCR, and this refers
to the 1low order user byte of condition codes. Any instruction using
this mnemonic will refer to eight bits of data only. Second, there is
SR, and this refers to the whole status register. Any instruction using
this mnemonic, in order to modify the contents of the status register,
will only be executed if the 68000 is in supervisor mode.

Figure 1.2 shows the allocation of flags within the status word. The
Carry (C), Zero (Z), Negative (N), and Overflow (V) bits are standard
condition flags. There is also an Extend (X) bit flag which is always
set to the same state as the Carry flag, if it is affected by any
particular instruction. The Extend flag is used for multi-precision
arithmetic operations. Chapter 2 describes the relevance of these flags
for instructions.

The three least significant bits of the system status byte are used as
the interrupt disable mask (IDM) for the 68000. Seven prioritized levels
of interrupt are catered for, and each priority interrupt causes
execution to be routed through an interrupt vector. The mask in the
status register specifies the range of interrupts which are to be
ignored. If, for example, the mask is set to binary 011 (3), interrupts
1 to 3 will be ignored by the processor.

Note that the 68008 only has three levels of interrupt (i.e., 2, 5,
and 7). On the QL, a level 5 interrupt is transitory and will always
generate a level 7 interrupt (non-maskable) within 20 ms.

The Supervisor flag (S) determines whether or not the 68000 is running
in supervisor mode., If the bit is set (i.e., 1), the processor will be
in supervisor mode. Last, but far from least, is the Trace (T) flag.
This flag enables the processor to be run in single-step mode, and
permits system debuggers to obtain control over instruction execution.

1S 14 13 12 1110 9 8 17 6 S 4 3 2 1 0 _bit
T S IDM X N|Z]|V]|C
1f¢ A22 Aééé
AN i ~ o
System byte User byte

Figure 1.2 68000 status register

1.3 Use of memory

Up to 1 Megabyte of memory may be directly accessed by the 68008. A
20-bit address bus 1is required to address this amount of memory.
Addresses can, therefore, be represented by five digit hexadecimal
numbers in the range $00000 to $FFFFF. To access a byte of data in
memory, any one of the possible addresses may be used. Accessing a word
(i.e., 16 bits) or a long-word (i.e., 32 bits) of memory is a little
more restrictive., Words or long-words can only be addressed at even
addresses; that is, $00000, $00002, and so on up to $FFFFE.

15 8 7 0 Bit

msh |r Isb
SO0 | SO0001 Word | (High-order)
Long-word
msh I Isb (Low-order)
SO002 | S00003
|
l z
|
msh ! Isb
SFFFFE | SFFFFF
|

Figure 1.3 Memory usage

In the case of word addressing the most significant byte of the word
will be found in the even address, and the least significant byte of the
word will be found in the following odd address (see Fig.1.3). Long-word
addressing 1is similar to word addressing in that it involves the
equivalent of two word accesses. The high-order word of the long-word
will be found first, followed by the low-order word of the long-word.

1.4 Moving between supervisor and user modes

To know that the 68000 has two modes of operation is not particularly
useful unless you know how to swap between them. When the 68000 is reset
(e.g., at power-on) the bottom eight bytes of memory are loaded into the
supervisor stack pointer and the program counter, and instruction
execution commences in supervisor mode.

Because we start off in supervisor mode the first thing we need to
know how to do is enter user mode. The task is not onerous! Any
instruction, which 1is capable of affecting the state of the S flag in
the status register, also has the ability to transfer execution to user
mode. An example is the RTE (ReTurn from Exception) instruction. This
instruction will load the status register with the word on the stack,
and load the program counter with the following two words on the stack.
If the word loaded into the status register reset the S flag, user mode
will be entered. If the S flag remains set, supervisor mode will
continue.

10

Once you are in user mode, the method of getting back into supervisor
mode is to cause some form of exception processing. Exception processing
will occur under a number of conditions:

1. Addressing violation. A word or long-word was addressed on an odd
byte boundary.

2, Privileged instruction violation, A privileged instruction was
executed.

3. Illegal or unimplemented opcode. The instruction executed was not a
legal instruction.

4, TRAP instruction execution. All TRAP instructions are treated as
internal exceptions,

5. TRAPV, CHK, DIVS, DIVU exception error condition has occurred (e.g.,
divide by zero).

6. Trace active. If the T flag in the status register is set, exception
processing will be performed after each user instruction is executed.

7. External interrupt request. One of seven (n.b,, three on the QL)
prioritized interrupts has been received.

8. Reset. The 68000 processor has physically been reset.

9. Bus error. An error has occurred on the physical address/data bus of
the 68000 processor,

The 1last two of these exception processes (reset and bus error) are
clearly not of much use to the applications programmer! The most common
way of entering supervisor mode from a program is through the use of a
TRAP instruction.

11

