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FOREWORD

This FIFTH CONFERENCE ON AUTOMATED DEDUCTION, held at Les Arcs,
Savoie, France, July 8 - 11, 1980, was preceded by earlier meet-
ings at Argonne, Illinois (1974), Oberwolfach, West Germany
(1976) , Cambridge, Massachusetts (1977), and Austin, Texas (1979).

This volume contains the papers which were selected by the pro-
gram committee from the 62 papers submitted to the conference.
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USING META-THEORETIC REASONING TO DO ALGEBRA

Luigia Aiello (f ,1)
Richard W. Weyhrauch (})

(1) Istituto di Elaboraszione della Informazione, CNR, Pisa, Italy
(3) Artificial Intelligence Laboratory, Stanford University, Stanford, USA

ABSTRACT

We report on an experiment in interactive reasoning with FOL. The subject of the reason-
ing is elementary algebra. The main point of the paper is to show how the use of meta-
theoretic knowledge results in improving the quality of the resulting proofs in that, in this
environment, they are both easier to find and easier to understand.

1. INTRODUCTION

In this paper we report on an experiment in interactive reasoning, namely reasoning with
FOL about elementary algebra.

FOL is a conversational system designed by Richard Weyhrauch at the Stanford Artificial
Intelligence Laboratory. It runs in LISP on a KL10. It implements First Order Logic
using the natural deduction formalism of Prawitz [Pra65] enriched in many ways. In this
paper we make no attempt to be self-contained, mostly because of space limitations. We
refer to the literature [Wey77,78,79;Aie80;Fil78,79;Tal80] for an introduction to FOL, its
many features and some examples of its use.

We chose elementary algebra as the subject of our reasoning because it is a commonly
known field and has an established axiomatic mathematical presentation. Another reason
for this choice is that future applications of FOL will require knowledge of the algebraic
facts of arithmetic. Hence, it is important to provide FOL with the ability to reason about
arithmetic and to discover what arithmetic and meta-arithmetic facts are used in ordinary
conversations about numbers.

The goal of our experiment was epistemological: to verify the adequacy of FOL as a
framework for knowledge representation. We were interested in verifying the ability of
FOL to “be told” about elementary mathematics. In order to understand the spirit of
the experiment it is important to explain our criterion for determining when a reasoning
system is adequate. It is not simply its ability to carry out proofs that is relevant. In
the case of arithmetic, a special purpose theorem prover designed for performing algebraic
manipulations can certainly attain the same theorems as our treatment in FOL, some-
times in a faster way (in terms of cpu time). The central issue is how rich a mode of
expression is allowed by the system. That is, what facts are implicit by being part of the
code of the system and what facts can be explicitly explained to it. It is the qualsty of the
conversation that matters. From this viewpoint not many existing theorem provers can be



considered adequate. The treatment of elementary algebra and algebraic manipulations
presented in this paper uses modes of expression (namely, meta-theoretic) that are simply
not explicitly available to most theorem proving systems.

FOL provides a rich enough conversational facility so that an agreement with the user is
made about the subject of the conversation and a domain of consensus is established in
which to carry on the reasoning. The first thing to be agreed with FOL is which language
to speak, i.e. which tokens we are going to use in our conversation and what syntactic role
they will play. FOL then expects to know what facts we assume as basic truths (axioms)
of our subject domain. At this point it is ready to do reasoning with us.

Making the above kind of conversation explicit is part of the epistemological flexiblity
of FOL. Another aspect of the flexibility of FOL is that it is capable of being told to
relativize things to the right context. In fact, it can deal with many theories at the same
time. One of them, named META, generally contains meta-theoretic knowledge. It plays
a special role because of the way it can communicate with other theories. The possibility
of representing meta-theoretic knowledge at the right level, along with the possibility of
using it intermixedly with knowledge at the theory level, is a major feature of FOL.

In ordinary math books the distinction between statements at the theory level and those
at the meta-theory level is often blurred, if not completely absent. Conversely, if the
reasoning system you are dealing with has no capability of explicitly representing meta-
theoretic knowledge, many of the statements in elementary math books cannot even be
expressed. This might not be interesting if such meta-statements never appeared in prac-
tice. On the contrary, they arise very often in mathematics books (as well as in ordinary
conversation, but this is not the point of the present paper).

In order to have a reasonable conversation with a system about algebra, you want it to
have an understanding of algebra. In other words, you require that the ability of the
system to perform manipulations and answer questions is (at least) as good as yours. We
have chosen to bring FOL to this understanding by following a foundational approach. It
consists in starting with some axioms and incrementally build a theory using in new proofs
only facts that are either axioms or have already been proved. Math books are frequently
written from a foundational point of view, with the intent of producing an understanding
in the reader.

From an epistemological point of view we consider this experiment a success as an ex-
amination of our experience with FOL shows that: (1) Proofs expressed to FOL closely
resemble the informal proofs of math books, both for their length and for the kind of
knowledge they use. (2) Proofs become shorter and shorter along the way, i.e. the more
facts you have already proved, the simpler it becomes to prove new ones. (3) What in the
book is left as an “easy exercise for the reader”, usually is an easy exercise for FOL too -
it can be proved with a single line proof.

Our developement of algebra in FOL follows the presentation in [BML65], paying par-
ticular attention to consider representing the content of each sentence in the book. We
have proved theorems about integers considered both as an integral domain and as an
ordered integral domain. We omit the presentation of order and concentrate on the first
part. This gives us chances to speak about the use of meta-theoretic knowledge in building
proofs, which is one the main purposes of this paper.

The use of meta-theoretic knowledge has been prompted by the observation that in rewrit-



ing (i.e. “simplifying”) arithmetic expressions we have to deal with the commutativity of
the operators plus and times. It is known that commutativity cannot be used as a rewrite
rule, since it would cause the rewritings to loop.

This observation has led some authors to deal with equivalences for equational theories
involving associative and commutative operators in special ways. For example, finding
complete sets of equations that could be used as rewriting rules, or special code to deal
with particular cases. The approach we have followed to perform algebraic manipulations
on . arithmetc expressions is different. The fact that the operators plus and times are
commutative, instead of being used at the theory level (by using the relevant axioms),
has been embedded into FOL at the meta-theory level. This has been done by specify-
ing what kind of manipulations are allowed on the symbols occurring in an arithmetic
expression. Namely, arguments to the functions plus and times can be reordered (for
instance to check that x*y and y*x are the same, hence that x*y=y*x holds). As a result,
we have devised a “simplification” algorithm that manipulates arithmetic ezpressions by
using both theoretical and meta-theoretical knowledge.

The paper is organized as follows. We first explain in detail what has been done at the
theory level, and make remarks about proof building within the theory. Then we explain
what has been described at the meta-theory level, and finally, how the the simplification
algorithm for arithmetic expressions works, in particular, how it uses at the same time
knowledge represented in both the theory and the meta-theory.

2. REASONING AT THE THEORY LEVEL

FOL [Wey77,78,79] interacts with the user in a sorted first order language. One of the
characterizing features of FOL is that knowledge is represented in the form of L/S struc-
tures (or L/S pairs). These can be explained as a pair of descriptions: a syntactic one
(a sorted language and a set of axioms) and a semantic one (a domain of interpretation
and information about the interpretation of some of the symbols of the language). The
specification of the semantics is done by attaching LISP objects and LISP code to syntactic
entities, via what is called semantic attachment. The semantic description is also called
a simulation structure. It functions in FOL as its internal mechanizable analogue of a
model for the theory specified by the given syntax. Note that, with an abuse of language,
we frequently call an L/S structure a theory.

In order to build a theory for algebra we start by telling FOL that we want to build a
new L/S structure, name it ARITH, and direct our attention to it. Then, by means of the
following declarations:

DECLARE SORT INTEGER,NATNUM,NEGNUM,

MG INTEGER > {NATNUM,NEGNUM};

DECLARE INDVAR u v w x ¥ z ¢ INTEGER;

DECLARE OPCONST -(INTEGER)=INTEGER;

DECLARE OPCONST + * - (INTEGER,INTEGER)=INTEGER;

we tell FOL that we are going to speak about integers (i.e. INTEGER is a sort), natural
and negative numbers. We specify that natural and negative numbers are integers, i.e.



the sort INTEGER is more general (MG) then both the sort NATNUM and the sort NEGNUM.
We then introduce some individual variables ranging over the integers and some operator
constants along with their arity and their domains and ranges.

After the language has been established, we can tell FOL the axioms for integral domains.

AXIOM COMMLAW: V u v.(u+v)=(v+u),
V u v. (uxv)=(v*u);
ASSOLAVW: V u v w.u+(v+w)=(u+v)+w,
V u v w.ux(vew)=(u*v) *vw;
DISTLAW: V u v w.u*(v+w)=(u*v+u*w);
ZERO: V u.u+0=y;
UNITY: V u.u*i=u;
NONTRIV: - 0={;
ADDINV: V u.3 v.u+v=0;
CANCEL: V u v w.(n u=0 A u*v=u*w D V=W);;

As for the simulation structure, the objects of sort NATNUM are attached to the LISP natural
numbers. There is no need for an explicit attachment to the negative numbers because,
as an example, the expression “-3” in FOL is interpreted to be the operator unary minus
applied to the natural number three. The operators plus and times are attached to the
LISP functions PLUS and TIMES, respectively.

As already noted, we adopt the foundational approach, hence no use is made of the
operators unary and binary minus in the axioms. After the theorem (named UNINV)

Vuvw (utv=0 A utw=0 D v=w)

stating the unicity of the inverse for the operator plus has been proved, unary minus is
introduced by giving FOL the implicit definition (named INVAX)

V u.u+(-u)=0

and attaching the symbol “-” to the LISP function MINUS. We can then introduce the
binary minus by the definition

V xy. (x-y)=(x+-y)

In our interaction with FOL, there is no attempt to derive each proof by starting with a
minimal set of notions: we introduce and use new notions when they contribute to making
proofs more natural. The axiom ADDINV, together with the theorem UNINV may seem to
convey the same information as the axiom INVAX, hence they may appear to be of the
same use in proof building. Actually this is false: when performing deductions, the axiom
INVAX can be used directly but the use of ADDINV involves the application of the deduction
rule for existential elimination.

The goal of building proofs that are as natural as possible has been pursued not only by
introducing the relevant notions as soon as they are available, but also by exploiting many
built-in features of FOL. No attempt has been made to build proofs using the bare logic,
i.e., the deductive apparatus of Prawitz’s natural deduction alone. We have freely used
both the tautology tester and the rewrite/eval commands of FOL. The tautology tester
checks whether or not a well formed formula follows as a tautological consequence from
a given set of formulas.



The use of the rewrite/eval commands has played a central role in many proofs. The
command REWRITE expects a term (or a wif) and a simpset, which is a set of rewrite
(simplification) rules and rewrites the term (wff) according to the given simpset. The
command EVAL is similar to REVRITE, but it makes use of both the syntactic and the
semantic knowledge it is provided with, in the form of a simpset and of semantic attach-
ments, respectively. More details about the workings of REFRITE and EVAL can be found
in [We77,78,79;Aie80].

To provide an example of use of REWRITE, a proof of the statement:
V x. ((x*x=x) DO (x=0 V x=1))

can be produced starting from the instantiation of the cancellation law on the terms x,
x and 1, i.e,, -x=0 A x*x=x*1 D x=1. This can be rewritten by a simpset containing
Vx.x*1=x and yields -x=0 A x*x=x D x=1. The theorem follows as a tautological con-
sequence.

The example just presented is very simple. The situation is more complicated when large
simpsets and/or many rewritings are involved. This prompted us to construct a “standard”
simpset which allowed us to perform most of the standard algebraic manipulations by a
single REWRITE, or EVAL.

The following simpset, named S8 for Simplification 8et, contains either axioms or formulas
which were proved using FOL.

UNIT V u.(u*i)=u
V u. (1*u)=u
NULL V u.(u+0)=u
V u. (0+u)=u
V u. (0*u)=0
V u. (ux0)=0
INVX V u.(u+-u)=0
MINS V u v.(u-v)=(u+-v)
V u v.-(u+v)=(-u+-v)
V u.--u=u
-0=0
V u v. (u¥-v)=-(u*v)
V u v. (~uxv)=-(u*v)
ASSO0 VYV u v w. ((u+v)+w)=(u+(v+w))
V u v w. ((u*v) *w)=(u*(v*w))
DIST V u v w.(ux(v+w))=((u*v)+(u*w))
V u v w. ((u+v) *w)=((usw) + (v*w))

The evaluation of an arithmetic expression by means of the above simpset (i.e. EVAL
BY 88;) puts it in the form of a sum of monomials, with no redundant occurrences

of zeroes, ones and minus signs, and where a minus sign possibly prefixes some of the

monomials.

It should be noticed that the commutativity laws for plus and times do not ezplicitly

appear in the above simpset. Hence, whenever commutativity has to be used in a proof,
the user has the choice of either instantiating the relevant axiom (which often results



in a pretty long and “unnatural” proof) or better, to use the meta-theoretic knowledge
(explained in the following) to further process the arithmetic expression(s) he is dealing
with.

3. REASONING AT THE META-THEORY LEVEL

In order to speak with FOL about facts in the meta-theory of arithmetic expressions we
have to set up the language (actually, the meta-language) of arithmetic. We start by
telling FOL, within the L/S structure named META, that AREX (ARithmetic EXpressions)
is a sort and that objects of sort AREX are TERMs. The sort TERM, as well as the sorts
INDCONST, OPCONST, etc., appearing in the following are part of the description in META of
the language objects (which has been developed by R. Weyhrauch and C. Talcott).

In META we give names to the objects of the theory. We start by introducing individual
constants for the operator symbols of the theory, and attaching them to the corresponding
objects.

DECLARE INDCONST Minus, Sum, Prod ¢ OPCONST,
MATTACH Sum & ARITH:OPCONST: + ;
MATTACH Prod + ARITH:OPCONST: * ;
MATTACH Minus ¢ ARITH:OPCONST: - ;

The command MATTACH binds names of individual constants in META to objects in a par-
ticular theory. In this case the theory is ARITH and the objects are OPCONSTs.

The sort Integer-INDVAR is then introduced in META in order to speak about the individual
variables of sort INTEGER in the theory. We specify that objects of sort Integer-INDVAR
are particular arithmetic expressions and also particular individual variables. We also
give names in META to the variables of sort INTEGER introduced in the theory (i.e. T-u is
MATTACHed to u, T-v to v, etc.).

DECLARE PREDCONST Integer-INDVAR(AREX);

MG AREX > {Integer-INDVAR};

MG INDVAR > {Integer-INDVAR};

DECLARE INDCONST T-u,T-v,T-w,T-x,T-y,T-z ¢ Integer-INDVAR;
MATTACH T-u ¢ ARITH:INDVAR: u;

In order to speak in META about arithmetic expressions in their most general form (i.e.
expressions in ARITH that are built out of both individual variables and constants and the
operators plus, times and minus, as well as function symbols applied to some arguments),
we have to describe in META function application at the theory level. This is done by
extending the language in META with the new sort ARGS (ARGuments).

DECLARE SORT ARGS;
MG ARGS > {AREX};

We have specified that the sort ARGS is more general than the sort AREX. This implies
that an arithmetic expression can be an argument to a function. Conversely, no require-
ment is imposed on arguments to consist of one or more arithmetic expressions. Hence,



in an arithmetic expression, function symbols can occur that have been declared to map
objects of any sort into objects of any other sort, as far as they eventually yield to an
arithmetic expression. In other words, an arithmetic expression in ARITH is any term that
is hereditarily well sorted and whose sort is INTEGER.

The constructors and selectors needed to handle arguments are also introduced, as well
as those needed to handle the application of function symbols to arguments. These con-
structors and selectors are then attached to the relevant LISP code.

4. COMPUTING IN META

To provide an example of how computations are performed in META and how the relevant
information is retrieved from the theory ARITH, whenever needed, let’s discuss how the
predicate MONOMIAL is defined and how its evaluation goes.

AXIOM MONOMIAL: V ae.(MONOMIAL(ae) = INDEL(ae) V - (funof(ae)=Sum));;

where
AXIOM INDEL: V ae.(INDEL(ae)

AXIOM INDSYM: V o. (INDSYM(o)
V o. (INDCONST (o)

INDSYM(ae) V NEGNUMRAL(ae)),;

INDCONST (o) V INDVAR(o) V INDPAR(0)),
syntype (0)=Indconst),

V o. (INDVAR(0) syntype (o)=Indvar),

V o. (INDPAR (o) syntype (0)=Indpar);;

AXIOM NEGNUM: V ae.(NEGNUMRAL(ae) =
mainsym(ae)=Minus A NATNUMRAL(arg(1,ae)));;

(e

Note that the predicate MONOMIAL is supposed to be applied to arithmetic expressions
(aes) that have the form of a sum of monomials (namely, to arithmetic expressions that
have already been simplified at the theory level by 8S). Hence, to check if an arithmetic
expression in this form consists of only one monomial we have to check whether it consists
of an individual element or if its function part is not a plus.

Individual elements are defined to be either individual symbols (i.e., individual constants,
variables or parameters) or negative numerals. In FOL negative “numerals” aren’t in-
dividual symbols: they are natural numerals prefixed by the unary minus sign.

To check whether or not an object is an INDCONST (or an INDVAR, or an INDPAR) its syn-
tactic type has to be determined in ARITH. This is done by the function syntype which is
attached to the following LISP code.

ATTACH syntype & (LAMBDA(X) (SYNT-DN X °ARITH));

The LISP function SYNT-DN applied to X and ARITH switches attention from the L/S
structure META to ARITH, computes the syntactic type of X in ARITH, then switches back
to META and brings back its result.

As an examplé, MONOMIAL(T-u) will evaluate to true. This is because syntype (T-u)
evaluates to Indvar since u has been declared to be an INDVAR in ARITH. On the other
hand, if AE has be declared (in META) to be of sort AREX and has been MATTACHed to the
term x+y (in ARITH), then MONOMIAL(AE) will evaluate to false. Its syntactic type (in



ARITH) is neither INDCONST, nor INDVAR, nor INDPAR, and its function part is the operator
plus (i.e., funof (AE)=Sum is true). Note also that the evaluation of funof (AE) involves
an L /S structure switching, to check that the main symbol of the expression attached to
AE actually is an operator, i.e., its syntactic type in ARITH is either OPCONST or OPVAR.

5. THE SIMPLIFICATION ALGORITHM

Due to space limitations we cannot report the complete set of meta-axioms that imple-
ments in FOL the simplification algorithm for arithmetic expressions. We can only sketch
it.

In order to simplify an arithmetic expression, it is first evaluated at the theory level by
means of the simpset 88. This process, as already noted, puts it in the form of a sum of
monomials. Then, the manipulations that are performed on the resulting expression at
the meta-theory level consist in a reordering and merging of the monomials constituting it.
The reordering of a monomial is performed by matching the variable (and function) sym-
bols occurring in it with a lexicon, which is the list of all the variable and function symbols
occurring in it, in the order they first occur. Thus, in META, given an arithmetic expression,
its lexicon is built first, then it is used to reorder the monomials and merge them. The
choice to build a lexicon for each arithmetic expression in the way just described has been
done on the assumption that there is no pre-extablished order among the symbols of an
arithmetic expression. On the contrary, the order is intrinsic in the expression itself. In
other words, there is no reason for considering the expression y*x “less ordered” then the
expression x*y, per se, while the expression x*y+y*x has to be transformed into 2*x*y and
not into 2%y#*x (i.e., the reordering is to be done according to the lexicon (x y), because
this is the order in which the variables x and y occur).

After the reordering and merging is done, some further simplification of the arithmetic ex-
pression can still be possible (for instance if a monomial ends up with 0 or 1 as a coefficient).
Thus, the arithmetic expression is processed again at the theory level, evaluating it by
means of the following simplification set, named 858 (Small Simplification Set).

Vu. (i%u) = u
YV u. (0*xu) =0
V u.(-1%u) =-u
Vu. (0O+u) = u
Vu. (u+t0) = u

The behaviour of the entire algorithm that simplifies arithmetic expressions can then be
summarized as follows:

At the theory level: evaluate the arithmetic expression by means of the simpset SS.

At the meta-theory level: build the lexicon; simplify all the arguments of functions (if
any) that are arithmetic expressions; reorder each monomial according to the lexicon and
merge similar monomials.

At the theory level: evaluate the arithmetic expression by means of the simpset SSS.

This entire process is invoked at the meta-theory level, by the following statement.



