HIERARCHICAL
OBJECE
ORIENTED
o3 DESIGN

¥ 4 e v
i) b
;? X v
= e o
' » e
b :
Famwn ;
i
ra v

T Peter]J.

PRENTICE HALL

B M ROBINSON

HIERARCHICAL
OBJECT-ORIENTED
DESIGN

PETER J. ROBINSON

PRENTICE HALL
NEW YORK LONDON TORONTO SYDNEY TOKYO SINGAPORE

First published 1992 by

Prentice Hall International (UK) Ltd
Campus 400, Maylands Avenue
Hemel Hempstead

Hertfordshire, HP2 7TEZ

A division of

Simon & Schuster International Group

© Prentice Hall International (UK) Ltd, 1992

All rights reserved. No part of this publication may be
reproduced. stored in a retrieval system, or transmitted.,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior
permission, in writing, from the publisher.

For permission within the United States of America
contact Prentice Hall Inc.. Englewood Cliffs. NJ 07632

Typeset in 10 on 12pt Times Roman by
Keyboard Services, Luton

Printed in Great Britain by Redwood Books,
Trowbridge, Wiltshire

Library of Congress Cataloguing-in-Publication Data

Robinson, Peter J. (Peter Jeremy)
HOOD : hierarchical object-oriented design / Peter J. Robinson.
p. cm.
Includes bibliographical references and index.
ISBN 0-13-390816-X (pbk.)
1. Object-oriented programming (Computer science) 1. Title.
QA76.64.R63 1992
005.1'2-dc20 92-16817
CIP

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-13-390816-X

2 345 9 95 94 93

HIERARCHICAL
OBJECT-ORIENTED
DESIGN

PRENTICE HALL

" OBJECT-ORIENTED
SERIES |

B. MEYER
Eiffel: The Language

D. MaNDRIOLI AND B. MEYER
Advances in Object-Oriented Software Engineering

B. MEYER
Eiffel: The Libraries

B. HENDERSON-SELLERS
A Book of Object-Oriented Knowledge

M. LoRENZ
Object-Oriented Software Development: A Practical Guide

EDITOR’S PREFACE

The potential interest of object-oriented development for real-time and process-
control applications has caught many people’s attention. But there remains a certain
reluctance to apply the object-oriented approach in large mission-critical applica-
tions. The contribution of HOOD here is essential, as few, if any, other methods in
the field have stood the test of application to sizable real-time projects.

The HOOD method (the initials stand for hierarchical object-oriented design) was
commissioned by the European Space Agency and developed by CISI Ingénierie.
The original version was explicitly meant for software to be developed in Ada.
Probably for that reason, it did not support the full range of object-oriented
concepts, focusing instead on modularity, data abstraction, information hiding,
hierarchically structured abstract machines, and of course support for concurrent
execution and real-time applications. The importance of classes and inheritance was
later recognised, however, and the method as described in Peter Robinson’s book
now supports these concepts. It may be used in conjunction with object-oriented
languages, while retaining its compatibility with Ada.

Although there have been a number of articles on HOOD and a tutorial by
Maurice Heitz at TOOLS conference, the method has not received so far the wide
coverage that it deserves. The present book should help correct this situation. Peter
Robinson has for a long time been involved in HOOD, and played a major part in
its evolution. By acting as consultant to many projects using HOOD and training
numerous people in the method, he has gained an in-depth mastery of the concepts
and of their application.

Readers will benefit from this experience through the many examples and the case
study of the Appendix. They will also gain precious insights about how the method
should be applied in practice, learn about the possible pitfalls, and discover what it
takes to apply the object-oriented approach, with all its potential benefits, to the
tricky case of real-time systems.

PREFACE

This book is based on the definition of the syntax and semantics of hierarchical
object-oriented design (HOOD) as presented in the HOOD Reference Manual
Issue 3.1.1, published in February 1992, and on the HOOD method as presented in
the HOOD User Manual Issue 3.0, which was published in December 1989 to
complement the earlier HOOD Reference Manual Issue 3.0.

The changes introduced in Issue 3.1.1 as developments from Issue 3.0 are minor
from a technical viewpoint, but the document has been changed more significantly,
omitting, for example, a detailed section on Ada mapping. The HOOD User
Manual, which defines the HOOD method, has not yet been updated to reflect these
changes. This book may serve as a HOOD user manual until the HOOD Technical
Group completes this work.

One of the reasons for writing this book is that many readers of the HOOD
Reference Manual Issue 3.0 did not see the HOOD User Manual Issue 3.0, and
consequently had only a partial view of HOOD, which is not only a notation but,
much more importantly, also a method. This has been a serious disadvantage to
these readers, and has lead to criticisms about HOOD, some of which are due to
having only partial information. The author hopes that this book will remedy this
lack of information for the current version of HOOD.

Although HOOD was conceived with Ada as the programming language in mind,
the HOOD Reference Manual Issue 3.1.1 is written in more general terms, and
HOOD is now starting to be used with C++ as the target language. Chapter 10 of
this book outlines the variations needed when thinking in C++ terms. These
comments also apply to other object-oriented languages.

The book includes several examples to illustrate the didactic parts of the text.
There is also a complete sample design as an appendix. As examples, they are
intended to be simple, so that they can be understood by readers from diverse
backgrounds.

xii PREFACE

ACKNOWLEDGEMENTS

This book has evolved from the materials and experience of the HOOD method and
HOOD toolset courses that I have developed and presented for SD-Scicon (UK)
Training Limited, to whom I am grateful for permission to use this material. I have
also previously published papers on HOOD in two books in the Unicom Applied
Information Technology Series published by Chapman and Hall.

I would like to acknowledge the excellent contributions made by the original
developers of HOOD in the first ESA contract, the other members of the HOOD
Working Group in 1990 and the members of the HOOD Technical Group in 1991.
These include Maurice Heitz of CISI Ingenierie, Jean-Francois Muller of Matra
Espace, Klaus Grue of CRI A/S, and Joel Bacquet and Elena Grifoni of the
European Space Agency. I would like also to thank Tony Elliott of IPSYS Software
plc and Simon Handley of Birmingham Polytechnic for their many useful comments
on the draft of this book.

HOOD is a trademark of the HOOD User Group (HUG). This fact must be stated
in any publication referencing the name of HOOD in the context of the HOOD
method as the basis of the publication. A revised version of the HOOD Reference
Manual was published as Issue 3.1.1 in February 1992, and is available from the
HOOD User Group at the following address:

Finn Hass (HOOD User Group Chairman)
CRI A/S

Bregnerodvej 144

DK-3460 Birkerod

Denmark

Tel. +45(45)822100

The HOOD User Group may also be contacted through the author.

CONTENTS

Editor’s preface iX
Preface Xi

1 INTRODUCTION 1
1.1 History and objectives 1

1.1.1 ESA activities 1

1.1.2 ESA software engineering life-cycle 3

1.1.3 Ada design method development 5

1.1.4 Shortlist of methods 6

1.2 Rationale for the HOOD approach 7

2 HOOD METHOD 1
2.1 Design process 11

2.2 The Basic Design Step 14

2.2.1 Phase 1. Problem definition 15

2.2.2 Phase 2. Development of the solution strategy 16

2.2.3 Phase 3. Formalisation of the strategy 17

2.2.4 Phase 4. Formalisation of the solution 18

2.3 Application of the Basic Design Step 19

2.3.1 Root object 20

2.3.2 Terminal object 21

2.4 HOOD Chapter Skeleton 22

CONTENTS

FINDING OBJECTS AND OPERATIONS

3.1 Object definition
3.1.1 Definition of an object
3.1.2 Definition of a HOOD object
3.2 How to find objects: HOOD text approach
3.3 Operations
3.4 How to find objects: data flow diagram approach
3.5 Conclusion

HOOD DIAGRAMS

4.1 Passive and active objects
4.1.1 Passive objects
4.1.2 Active objects

4.2 Passive and active design

4.3 Operations

4.4 Include relationship

4.5 Implemented_By link

4.6 Userelationship

4.7 Uncle object

4.8 Operation_set

4.9 Dataflow

4.10 Exception flow

4.11 Environment object

OBJECT DESCRIPTION SKELETON

5.1 Object Description Skeleton structure
5.2 Objectdefinition

5.3 Provided interface

5.4 Requiredinterface

5.5 Dataand exception flows

5.6 Object Control Structure

5.7 Internals

5.8 Operation Control Structure

5.9 Pseudocode guidelines

5.10 HOOD pragmas

CLASSAND INSTANCE OBJECTS

6.1 Classobject development

6.2 Class objects

6.3 Instance objects

6.4 Examples of class and instance objects
6.5 Static object inheritance

25

25
26
27
34
41
43
50

51

51
51
52
54
55
56
57
59
65
66
67
69
72

75

75
78
79
82
84
85
87
91
94
97

100

100
101
104
107
110

CONTENTS

vii

7

10

REAL-TIME DESIGN

7.1 Concurrency
7.2 Constrained operations
7.3 Object Control Structure
7.3.1 OBCS definition
7.3.2 FIFO queue example
7.3.3 HOOD tasking pragmas
7.4 Op_Control object

ADA SOURCE CODE GENERATION

8.1 Adacode mapping

8.2 Visibility and scope
8.2.1 Visibility inside and between objects
8.2.2 Scope

8.3 Code implementation process

8.4 Designing types
8.4.1 Definingtypes
8.4.2 Typesoftypes
8.4.3 Mixed declarations of types and constants
8.4.4 Task types

DISTRIBUTED SOFTWARE DESIGN

9.1 Virtual node object

9.2 Virtual node object diagram

9.3 Virtual node object ODS

9.4 Designing a program with virtual node objects

DEVELOPMENTS OFHOOD

10.1 CASE tools
10.2 HOOD in the software development life-cycle
10.2.1 Interface torequirements
10.2.2 System configuration
10.2.3 Reuse of objects
10.2.4 Global type package
10.2.5 Abstract data type model
10.2.6 Prototyping
10.2.7 Testing

10.2.8 Verification and validation of a HOOD design

10.2.9 How toreviewa HOOD design
10.2.10 Quality assurance

10.3 Future extensions to HOOD
10.3.1 Object life-cycle
10.3.2 Object-oriented language support
10.3.3 Additional HOOD features

10.4 Standard Interchange Format

112

114
115
119
119
123
125
126

129

129
135
135
136
136
138
138
139
141
141

143

143
144
146
148

155

155
159
159
160
160
161
162
163
164
164
166
167
169
169
171
172
173

viii CONTENTS

Appendices
A HOOD method summary 175
B HOOD Chapter Skeleton 177
C HOOD reserved words 178
D Heatingsystem requirements 180
E Sample design: traffic lights 181
F ODS of class object lights and instance object lights_ac 204
G ODS of active objects FIFO_Queue and Interrupt 210
H ODS of Op_Control objects start and push 217
I Adalanguage features 221
J Glossary and abbreviations 227
Bibliography 233

Index 235

1

INTRODUCTION

1.1 HISTORY AND OBJECTIVES

Hierarchical object-oriented design (HOOD) is an Ada design method. That is to
say, HOOD was specifically developed as an architectural design method for
software to be written in Ada. The main reason for HOOD’s success in being
adopted for a wide range of Ada projects is probably that it was developed with the
clear objective of supporting the architectural design phase of the software
engineering life-cycle with a specific target programming language in mind. We look
into the life-cycle as defined by the European Space Agency (ESA) shortly, but first
let us look at the background in ESA prior to the development of HOOD.

1.1.1 ESA activities

I joined the European Space Agency in 1976 to work as a software engineer in the
Spacelab project. ESA, like NASA, is an agency that acts as a customer on behalf of
the governments that provide the funds, to procure space systems and to manage
research and development programmes from companies in the aerospace industry
throughout Europe, Canada and the United States. My role, therefore, was to act as
a customer in the project which was procuring Spacelab from industry. In this
case, the customer role was to supervise requirement definition, to review technical
progress in the development of the software by attending reviews at each stage
of the life-cycle, and finally to accept the software by participating in the full
acceptance process. Given the complexity of an embedded system in which all the
hardware and software was new, the requirements generally uncertain, and the
contractors spread across Europe, this approach of continuous involvement was
needed to ensure that quality was developed into the end-product. The final part,

2 INTRODUCTION

acceptance, was very important because although each of the companies involved
had its own quality assurance staff, there are always divided loyalties between
concern for the software quality and for the company’s commercial needs for
delivery to be completed, accepted and paid for. Thus the customer needs to perform
a long-stop quality assurance: an ultimate ‘no’ if the correct procedures are not
followed, tests are not performed exactly as planned, if all problems are not fully
cleared and if documentation is not up-to-date.

When the software for Spacelab was completed, I moved to the Technical
Directorate to take up a quality assurance role. As well as the usual concerns about
standards and procedures, I wanted to develop a more general software engineering
approach, and promote better technology. To this end, I first became interested in
Ada in 1982, before Ada was standardised. It seemed obvious that Ada would be a
good language for ESA projects since Ada was being designed specifically for
embedded software, which is a major part of ESA’s software, and that a lot of effort
was going into Ada and producing a language which combined new and old software
engineering concepts. On the other hand, critics saw a language that was too heavy,
that was ‘not adapted for real time’, for which no validated compilers were available
for a long time, and for which no industrial quality compilers were available for even
longer.

ESA Technical Directorate runs a technical research program each year, of which
software is a small part. In 1985, Michel Guerin, then head of the Simulation Section
of the Mathematics Division of Estec, decided to investigate the feasibility of using
Ada by starting a small study in which an existing piece of operational software, in
fact an attitude control system written in assembler, would be rewritten in Ada along
with its accompanying simulation test environment, written in Fortran. ESA re-
programmed the onboard software into Ada, using mainly the Program Design
Language (PDL) provided as a design, and the industrial contractors reprogrammed
the Fortran simulation into Ada. The resulting software was then run on a Data
General system and produced the correct results, although rather more slowly than
the corresponding Fortran simulation. The conclusion was that Ada would work, but
would not be usable for operational software at that time, and that Ada would not
take over from Fortran on existing projects or on existing application types for some
considerable time.

In 1986, the Mathematics Division decided that if Ada were to be used, then ESA
would need to know how to design Ada software, and so a study contract was
awarded jointly to three companies (CISI Ingenierie (France), Matra Espace
(France) and CRI A/S (Denmark)) to evaluate existing design methods for
suitability, if necessary to produce a new method, and to develop a training course.
The result is HOOD, which was completed in 1987.

When HOOD had been defined and the training course was being completed, it
was clear that if European Space Industry were to accept HOOD as a suitable
method, then a computer aided software engineering (CASE) toolset would be
needed to enforce the method as well as facilitating its use. The HOOD toolset would
aid the designer in the difficult task of producing and maintaining the graphics easily,

HISTORY AND OBJECTIVES 3

and would support the formal aspects, including checking of HOOD rules. This
would therefore meet the management need for consistency and productivity, and
the quality assurance needs for quality and correctness.

In 1988, a contract was awarded to Software Sciences in the UK, with support from
CISI Ingenierie, Matra Espace and CRI A/S, to develop a HOOD toolset according
to the ESA Software Engineering Standards PSS-05-0. In 1988, the Columbus Space
Station project adopted HOOD for the architectural design phase, and in 1989
Hermes Spaceplane project also selected HOOD. As a result of this interest, other
companies developed toolsets with varying technologies, but all following the
standard method.

During 1989, the HOOD Working Group took account of comments about HOOD
from the first users, and the need for new features to update the HOOD Reference
Manual to Issue 3.0, and to produce the HOOD User Manual. ESA was keen to avoid
disturbing designers, contractors and tool vendors during the early design phase, and
decided not to change HOOD again for at least three years. ESA, therefore, withdrew
from the development of HOOD, passing control to the HOOD User Group, which
had been initiated in the first contract for the definition of HOOD.

HOOD has since been adopted by several military projects in Europe, notably the
European Fighter Aircraft, by a nuclear power monitoring project in Belgium, by
French electricity projects, and a large communication network project. It is fair to
say that, in Europe, HOOD is considered for most major Ada projects as an
established method well supported by CASE tools.

1.1.2 ESA software engineering life-cycle

HOOD was initially developed to fit into the ESA software engineering life-cycle
which consists of the following phases and may be presented in the classic V shape in
Figure 1.1.

User requirements - — — — —————— — — —— ——— - Validation
Software requirements —— —— — — — —— — Verification
Architectural design —— — — — Integration test

/

Detailed design—— Unit test

N/

Code

Figure 1.1 ESA software engineering life-cycle.

4 INTRODUCTION

This life-cycle is primarily directed to an independent piece of software, that has a
user to define the requirements in a User Requirements Document. For an
embedded system, the user requirements are replaced by system requirements,
subsystem requirements or equipment requirements, which define the requirements
for a combined piece of hardware and software. In any case, the next step is to isolate
the software requirements in a Software Requirements Document (SRD). General-
ly, this is produced by a contractor in a consortium, led by a prime contractor. After
this SRD has been reviewed and approved by technical, quality assurance and
managerial staff from the prime contractor and the agency, the design work can
begin. The architectural design is intended to show the overall structure of the
proposed design, whereas the detailed design is required to provide a sufficiently
detailed description of the design to allow coding to follow. Both the Architectural
Design Document and the Detailed Design Document are reviewed and revised to
check conformance with the documented requirements. The software is then coded,
and is first tested in units using the detailed design as the requirements for the test
cases. The purpose of the integration test is to show that the completed software is
consistent with the architectural design, with particular emphasis on testing inter-
faces between code components, and on external interfaces. Verification is carried
out to demonstrate that the integrated software completely satisfies all the require-
ments documented in the SRD, and validation is performed to demonstrate that the
software meets the documented user’s requirements and that the software will
operate successfully.

In an ideal world, the SRD is the starting point for HOOD. In practice, the re-
quirements are not usually complete and unchanging at this stage. Often the
hardware requirements are unclear because the hardware itself is also under
development in a similar but parallel life-cycle. Thus the theoretical approach has to
be read and understood to be carried out in a less than ideal environment. This means
that changes should be expected, that top-down does not have to be applied rigidly,
and that it is the principles of the method that are important. There is, therefore, still
a role for the human being as software designer. In Chapter 10, we look at
the interface to requirements, mainly to consider how requirements could better be
defined to support the design phase. '

One of the major objectives of the architectural design is to provide a clear
identification of the components of the design and their interfaces. Such architec-
ures are most clearly expressed using good diagrams, especially data flow and control
flow diagrams. ESA experience was that contractors were generally unwilling to
commit themselves to an architectural design until the detailed design was complete,
and probably preferred to have completed coding. There was a hint of a suspicion
that really coding was coming before design. Accordingly, good diagrams were to be
an important part of HOOD.

HOOD does not stop there, though. In fact, a gopod HOOD toolset takes the
designer right through the Detailed Design phase into coding and testing, by
providing a text-based format for each object which can be refined step by step from
a bare description of the functionality and operational interfaces, to a pseudocode

HISTORY AND OBJECTIVES D

definition, to full code in the desired target language, i.e. Ada. Since most HOOD
designers do the programming as well, this is eminently sensible. There is therefore
no real break in the implementation from architecture to code. Currently, the break
in the life-cycle is between requirements and design: between statement of the
problem and development of the solution. Again, Chapter 10 looks into ways of
reducing this break by providing an object life-cycle.

As a consequence, one may say that HOOD is not just an isolated method, but is
a large part of the software development process. This is apparent when HOOD is
extended to include requirement references for each object, thus allowing a re-
quirement/object cross-reference table to be developed and maintained. Another
approach, which is used in the Columbus Software Development Environment
(SDE) for example, is to provide a relational database, which includes requirements
and traces to HOOD objects. The SDE, which is an example of an integrated
programming support environment (IPSE), is also used to provide configuration
management, not only of HOOD objects and designs, but also of all the other
documentation and code; this is the reason why HOOD does not provide any specific
configuration management features.

1.1.3 Ada design method development

The purpose of the contract let by ESA in 1986/7 was to develop an Ada-oriented
design method, supported by a training course. with the following additional
constraints:

1. The new method had to be acceptable to a wide range of European companies,
some with existing methods, and some without. It could not therefore easily be
an existing national method unless this could be shown to be excellent. The
experience of real-time programming languages, where Coral was developed
and used in the UK, Pearl in Germany and LTR (Langage Temps Réele) in
France, but each language was not accepted by other countries, was to be
avoided.

2. The method should be suitable for developing software for large systems, so
that they can be developed by multiple contractors in different sites and then
integrated to form a complete system.

3. The method should be adaptable for software systems to run on multiple
computers — these two points lead to an emphasis on interface definition and
on software integration.

4. The method should follow Structured Analysis and Design Technique (SADT)
and English definition of requirements since SADT was the method being
considered at that stage for requirements and was being used by the French
Space Agency CNES. In fact, the SADT aspect is not specifically addressed by
HOOD, although the User Manual looks into this point.

5. The method should lead onto Program Design Language (PDL) in the Detailed
Design phase, and to Ada for coding: this is seen in the formal structure of the

