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Preface

This volume contains the proceedings of the 1st International Workshop on
Formal Modeling and Analysis of Timed Systems (FORMATS 2003) held as
a satellite event of CONCUR. 2003 in Marseille, France, September 6-7, 2003.
FORMATS and CONCUR were hosted by the Université de Provence and the
Laboratoire d’Informatique Fondamentale de Marseille (LIF).

Timed Systems. Traditionally, timing aspects of systems from a variety
of computer science domains are treated independently in separate scientific
disciplines: People who are interested in semantics, verification or performance
analysis are working on models such as timed automata, timed Petri nets or
max-plus algebra. Electrical engineers have to consider propagation delays in
their circuits and designers of embedded controllers have to take into account
the time it takes for a controller to compute its reaction after sampling the
environment.

While indeed the timing-related questions in these separate disciplines have
their particularities (e.g., worst-case analysis vs. average-case optimization),
there is a growing awareness of the difficult problems common to all of them,
suggesting the interdisciplinary study of timed systems: the unifying theme un-
derlying all these apparently different domains is that they treat systems whose
behavior depends upon combinations of logical and temporal constraints, i.e.,
constraints on the distance between the occurrences of two events.

FORMATS is a new workshop aiming to be a major annual event dedicated
to the study of timed systems, uniting three independently started workshop
series related to the topic: MTCS (held as a satellite event of CONCUR. 2000~
2002), RT-TOOLS (held as a satellite event of CONCUR 2001 and FLoC 2002)
and TPTS (at ETAPS 2002), with a total in 2002 of around 100 individual
participants.

Of the 36 papers submitted to the first FORMATS workshop, 19 were selected
for presentation and publication. In addition to these contributions, invited talks
were given by Evgeny Asarin (VERIMAG, France), Paul Pettersen (University of
Uppsala, Sweden) and Reinhard Wilhelm (University of Saarbriicken, Germany).

We would like to thank the Program Committee members and the referees
who assisted us in the evaluation of the submitted papers. Also, many thanks go
to the other members of the local Organization Committee, in particular Silvano
Dal Zilio, Rémi Morin, Sarah Zennou, Pedro D’Argenio and all the members of
the MOVE team. We gratefully acknowledge the particular support from the
European project IST-2001-35304 AMETIST (Advanced MEthods in TImed
SysTems), as well as the sponsors of CONCUR: Conseil Général des Bouches du
Rhoénes, Région Provence-Alpes-Cote d’Azur, Ville de Marseille, Université de
Provence, Université de la Méditerranée and Laboratoire d’Informatique Fonda-
mentale de Marseille.

July 2003 Kim G. Larsen and Peter Niebert
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Timed Automata and Timed Languages
Challenges and Open Problems*

Eugene Asarin

VERIMAG, Centre Equation
2 ave de Vignate, 38610 Gieres
France
Eugene.AsarinQimag.fr

Abstract. The first years of research in the area of timed systems were
marked by a spectacular progress, but also by many natural and im-
portant problems left behind without solutions. Some of those are really
hard, some have been completely overlooked, some are known only to
small groups of researchers but have never been really attacked by the
community.

The aim of this talk is to present several open problems and research
directions in the domain of timed systems which seem important to the
author. In particular we will consider variants of timed automata, theory
of timed languages, timed games etc.

* Partially supported by the European community project IST-2001-35304 AMETIST

K.G. Larsen and P. Niebert (Eds.): FORMATS 2003, LNCS 2791, p. 1, 2004.
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Towards Efficient Partition Refinement
for Checking Reachability in Timed Automata

*

Agata Pétrolal, Wojciech Penczek®?3, and Maciej Szreter?

! Faculty of Mathematics
University of Lodz
Banacha 22, 90-238 Lodz, Poland
polrola@math.uni.lodz.pl
2 Institiute of Computer Science
PAS
Ordona 21, 01-237 Warsaw, Poland
{penczek,mszreter}Q@ipipan.waw.pl
3 Institute of Informatics
Podlasie Academy
Sienkiewicza 51, 08-110 Siedlce, Poland

Abstract. The paper presents a new method for building abstract mod-
els for Timed Automata, enabling on-the-fly reachability analysis. Our
pseudo-simulating models, generated by a modified partitioning algo-
rithm, are in many cases much smaller than forward-reachability graphs
commonly applied for this kind of verification. A theoretical description
of the method is supported by some preliminary experimental results.

1 Introduction

Model checking is an approach commonly applied for automated verification
of reachability properties. Given a system and a property p, reachability model
checking consists in an exploration of the (reachable) state space of the sys-
tem, testing whether there exists a state where p holds. The main problem of
this approach is caused by the size of the state space, which in many cases, in
particular for timed systems, can be very large (even infinite). One of the so-
lutions to this problem consists in applying finite abstract models of systems,
preserving reachability properties. To this aim, forward-reachability graphs are
most commonly used [6, 8, 14]. Reachability analysis on these models is usually
performed on-the-fly, while generating a model, i.e., given a property p, newly
obtained states of the model are examined, and the generation of the model is
finished as soon as a state satisfying p is found [6]. An alternative solution are
symbolic methods, one of which, very intensively investigated recently, consists
in exploiting SAT-based Bounded Model Checking (BMC) [3, 21]. In the BMC
approach, satisfiability of a formula encoding reachability of a state satisfying p

* Partly supported by the State Committee for Scientific Research under the grant
No. 8T11C 01419

K.G. Larsen and P. Niebert (Eds.): FORMATS 2003, LNCS 2791, pp. 2-17, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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is tested, using a symbolic path of a bounded length encoding the unfolding
of a transition relation. Since the length of this path affects dramatically the
size of its propositional encoding, the BMC methods are mainly applicable for
proving reachability, but can become ineffective when no state satisfying p can
be found (see the discussion in the section on experimental results). Therefore,
verification methods based on building (small) abstract models of systems still
have a practical importance, and developing efficient algorithms for generating
such models remains an important subject of research.

Our paper presents a new method for generating abstract models of Timed
Automata using a modified minimization (partitioning) algorithm [5]. The very
first motivation for our approach has been taken from [20], where the authors
claim that minimal bisimulating models (b-models, for short) for Timed Au-
tomata could often be smaller than the corresponding forward-reachability ones
(fr-models, for short). Since simulating (s-) models [17] are usually smaller than
minimal b-models, they could be used instead of the latter. However, it is clear
that there should exist abstract models preserving reachability properties that
are even smaller than the minimal s-models, as the latter preserve the whole
language of ACTL. To define these models we relax the requirement on the
transition relation of the s-models, formulated for all the predecessors of each
state, such that it applies to one of them only, and call the new class of models
pseudo-simulating ones (ps-models, for short). The models can be generated us-
ing a modification of the partitioning algorithm for s-models [10]. Moreover, the
method can be used in an on-the-fly manner for reachability verification.

The rest of the paper is organised as follows: Section 2 presents the related
work. In Section 3, we introduce Timed Automata and their concrete and ab-
stract models usually considered in the literature. Then, in Sections 4 - 6 we pro-
vide a definition, an algorithm, and an implementation of ps-models for Timed
Automata. Sections 7 and 8 contain experimental results and final remarks.

2 Related Work

Different aspects of the reachability analysis for Timed Automata have been usu-
ally studied on fr-models (8, 14, 16]. In [8], some abstractions allowing to reduce
their sizes are proposed, while in [14], data structures for effective verification
are shown. Alternative methods of reachability verification consist in exploit-
ing SAT-solvers [3, 21], BDDs (a solution for closed automata shown in [4]),
untimed histories of states and a bisimulation relation [13], or partitioning to
obtain pseudo-b-models [19]. Partitioning-based reachability analysis was stud-
ied also for other kinds of systems [7, 15]. Moreover, the paper [12] presents
various reachability-preserving equivalence relations. We provide a comparison
with models generated by these relations in the full version of this work [18].
Minimization algorithms for b-models were introduced in [5, 15]. The first
of them was applied to s-models in [10]. Implementations for Timed Automata
and b-models can be found in [1, 2, 20, 22|, and for s-models - in [11]. The
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paper [20] contains some examples showing that b-models can be smaller than
the corresponding fr- ones.

3 Timed Automata

Let IR (IR+) denote the set of (non-negative) reals, and IN - the set of natural
numbers. Let X = {z1,...,z,} be a finite set of variables, called clocks. A va-
luation on X is a n-tuple v = (v1,...,v,) € RY, where v; is the value of the
clock z; in v. For a valuation v and § € IR, v + ¢ denotes the valuation v’ s.t.
for all z; € X, ’l):; = v; +d. For a valuation v and a subset of clocks X C X,
v[X := 0] denotes the valuation v’ such that for all z; € X, v, = 0 and for
all z; € X\ X, v} = v;. By an atomic constraint for X we mean an expression
of the form z; ~ ¢ or z; — z; ~ ¢, where z;,z; € X, ~€ {£,<,>,>} and
c € IN. A valuation v satisfies an atomic constraint z; ~ ¢ (z; —z; ~ ¢) if v; ~ ¢
(vi —v; ~ c, respectively). A (time) zone of X is a convex polyhedron in IR’}
defined by a finite set of atomic constraints, i.e., the set of all the valuations
satisfying all these constraints. The set of all the time zones of X" is denoted by
Z(n).

Definition 1. A timed automaton A is a tuple (X, S, X,s% E,T), where X is
o finite set of actions, X = {z1,...,2,} s a finite set of clocks, E C S x
X x Z(n) x 2% x S is a transition relation. Each element e of E is denoted
by s kit G , which represents a transition from location s to s', performing an
action a, with the set’Y C X of clocks to be reset, and with a zone z defining
the enabling condition for e. The function T : S — Z(n), called a location
invariant, assigns to each location a zone defining the conditions under which A
can be in this location.

A concrete state of A is a pair ¢ = (s,v), where s € § and v € IR is a valuation
such that v € Z(s). The set of all the concrete states is denoted by @Q. The initial
state of Aisi = 1,...,n. The states of A can change as a result of passing some
time or performing an action as follows: the automaton can change from (s, v)
to (s',v') on e € E (denoted by (s,v) 54 (s',v')) iff e : s Wy s',v € z, and
v' = oY := 0] € Z(s'); and can change from (s,v) to (s’,v’) by passing some
time ¢ € IRy (denoted by (s,v) LA (,v")) iff s =5 and v =v+ § € Z(s).
The structure F; = (Q, ¢° —4) is the concrete dense state space of A.

Besides the relation —, defined above, other kinds of transition relations can
also be introduced. For our purposes, we define the concrete (discrete) successor
relation —€ Q x E x Q as follows: for ¢,¢' € Q and e € E, let ¢ > ¢’ denote that
¢’ is obtained from g by passing some time, performing the transition e € E, and
then passing some time again. Formally, ¢ = ¢’ iff (3g1,¢2 € Q)(361,62 € IR4)
q ﬁ,d G —>a g2 5—2>d q¢’. The state ¢’ is called a successor of g, whereas the
structure F, = (@, ¢°, —) is called the concrete (discrete) state space of A.

Let ¢ € Q. A ¢g-run of A is a finite sequence of concrete states gg — ¢, —

€n

23 ... 5" ¢, where go = q and e; € E for each i < n. A state ¢ €Qis
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reachable if there exists a ¢°-run and i € IN such that ¢’ = ¢;. The set of all the
reachable states of A will be denoted by Reach 4.

3.1 Models for Timed Automata

Let PV be a set of propositional variables, and let V, : @ — 2FV be a valua-
tion function, which assigns the same propositions to the states with the same
location, i.e., Va((s,v)) = Vo((s',0")) for all s = &'

Definition 2. Let F, = (Q,¢",—) be the concrete (discrete) state space of a
timed automaton A. A structure M. = (Fe.,V.) is called a concrete (discrete)
model of A.

Since concrete state spaces (and therefore concrete models) of Timed Au-
tomata are usually infinite, they cannot be directly applied to model checking.
Therefore, in order to reduce their sizes we define finite abstractions, preserving
properties to be verified. The idea is to combine into classes (sets) the concrete
states that are indistinguishable w.r.t. these properties.

Definition 3. Let M. = (F.,V.) be a concrete model for A. A structure M =
(G,V), where G = (W, wq,—) is a directed, rooted, edge-labelled graph with
a node set W, wyg € W is the initial node, and V : W — 2FV is a valuation
function, is called an abstract (discrete) model for A if the following conditions
are satisfied:

— each node w € W is a set of states of Q and q° € wy;

— for each w € W and q € w we have V,(q) = V(w);

— (Vwi,ws € Reach(W))(Ve € E) w; = ws iff 3q1 € w1)(3g2 € ws) ¢1 — g2,
where Reach(W) = {w € W | wnN Reach 4 # 0}.

The graph G is called an abstract state space of A, whereas its nodes are caolled
abstract states. The abstract model M is complete iff (Vg € Q)(Fw € W) q € w.

In what follows, we consider complete abstract models only.

In the literature, abstract models generated for a dense semantics (i.e., de-
rived from the concrete state space Fy) are usually considered. One of them are
surjective models. Below, we provide their definition adapted for the discrete
case:

Definition 4. A model M = (G,V) for A, where G = (W, wp,—), is called
surjective iff
(Vwy, we € Reach(W))(Ve € E) if wy — wo then (Vgo € wo)(3q1 € w1) ¢1 — ¢o.

An example of surjective models are forward reachability (fr-) models, com-
monly applied for reachability verification [6, 8, 14]. Reachability analysis on
these models is usually performed on-the-fly, together with their generation [6]

! The edges are labelled with the names of transitions in E.
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(notice that in the worst case the whole model must be generated). The models
can be further improved by applying various abstractions [8, 14].

Another class of abstract models considered in the literature are bisimulating
(b-) models. These models are usually generated for the dense semantics [1, 20],
but again their definition can be easily adapted also for the discrete one:

Definition 5. A model M = (G,V) for A, where G = (W, wp,—), is bisimu-
lating iff
(Vwy,ws € Reach(W))(Ve € E) if wy — wo then (Vg1 € w1)(3g2 € w2) 1 5 ga.

Moreover, in [17], the following simulating (s-) models were introduced:

Definition 6. A model M = (G,V) for A, where G = (W, wp, —), is simulating
iff for each w € W there ezists a non-empty w" C w such that ¢° € w§®" and

(Ywi,ws € Reach(W))(Ve € E) if wy <> wy then (Vg1 € w®T)(3g2 € wsT) q1 —
qz-

Both b- and s- models preserve reachability properties.

3.2 Zones and Regions

Finite abstract models built for Timed Automata use regions as states.

Definition 7. Given a timed automaton A, let s € S, and Z € Z(n). A region
R C S xIRY is a set of states R = {(s,v) | v € Z}, denoted by (s,Z). The
region (s,0) is identified with the empty region.

Let v,v" € R}, Z,Z' € Z(n), and R, R’ € S x Z(n). We define the following
operations on zones and regions:

|

v < iff 36 € R4 such that v/ = v + 6;

Z\ Z' is a set of disjoint zones s.t. {Z'} U (Z \ Z’) is a partition of Z;

— R\R' ={(s,2")| 2" € Z\ Z'} for regions R = (s,Z) and R’ = (s,2");

- ZlY :=0]={v[Y :=0]|ve Z}; [Y:=0Z={v|v[]Y:=0]€Z};

- Z/={veR"|(weZ)v};, Z/={"eR"|(veZ) <v}

Notice that the operations N, /, ./, Z[Y := 0] and [Y := 0]Z preserve zones.
These results together with the implementation of Z\ Z’ can be found in [1, 20].

4 Pseudo-simulating Models

In [20], the authors claim that minimal b-models, generated for the dense se-
mantics, are often smaller than the corresponding fr- ones. Since s-models are
usually smaller than the former, they could be better for reachability verifica-
tion. However, in order to test reachability even more effectively, we introduce
pseudo-simulating (ps-) models (which are never bigger than s- ones), and pro-
vide an algorithm for an on-the-fly reachability verification. The idea behind
the definition of ps-models consists in relaxing the requirement on the transition
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ps - model

Fig.1. A ps- and s-model generated for the same case

relation of the s-models, formulated for all the predecessors of each state (see
Def. 6), such that it applies to one of them only. The selected predecessor needs
to be reachable from the beginning state in the minimal number of steps.
Before we give the definition, we need some auxiliary notions. For two nodes
w,w’ of G, let w — w' denote that there exists e € E s.t. w = w'. A path 7 in G
is a finite sequence of nodes and edges of the form 7 = w; = wy 33 ... P W,
with e; € E for all i < k (labels on the edges can be then omitted). We say that m
is from w; to wg. A path is of length k if it contains k edges. For a node w € W,
the depth of w, denoted by dpt(w), is the length of a shortest path from wq to w

in G if there is such, otherwise, the depth of w is assumed to be infinite.

Definition 8. A model M = (G,V) for A, where G = (W,wp, —), is pseudo-
simulating iff for each w € W there exists a non-empty w" C w such that q° €
w§®", and

(Ywy,ws € Reach(W))(Ve € E) if wi = wa, then there exists w € Reach(W)

and h € E such that w 2 wy and dpt(w) is minimal in the set {dpt(w’) | w’ LR
wy, for some h' € E}, and (*) (Vg1 € w®") (g2 € ws") ¢ B qgs.-

The following example shows a difference between s- and ps- models:

Ezample 1. Fig. 1 presents a ps- and s-model generated for the same case. The
cors of the classes are coloured; circles and straight lines are used for drawing the
concrete model, while ellipses and arcs - for abstract ones. In the ps-model, the
state of wi°" does not need to have successors in w$°". This, however, is required
in the s-model, which results in creating two additional nodes w} and wj.

Let M = (G, V), where G = (W, wp, —), be a ps-model for A. A run p = go 3
a3 ...3 g, of A is said to be inscribed in a path m = wg 3 w; 3 ... 3 w,
inG, if g €w; foralli =0,...,n.

Denote all the edges w = w» in G satisfying the condition (*) of Def. 8 by
w = w'. Moreover, let w = w’ denote that there exists e € E s.t. w = w’. Next,
we characterise ps-models:

Theorem 1. The following conditions hold:

a) Each ¢°-run of A is inscribed in a path of G,
b) For each w € Reach(W), there isn € N and m = wp = w; = ... = Wy
n G s.t. w=w,,
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modeis

preserving
trace

equivalence

pseudo-simulating
models

simulating ( bisimulating
models models

Fig. 2. Relations between various kinds of models

c¢) For each path m = wg = wy = ... = wy, there exists a ¢°-run p = ¢° = =
T = gn of A inscribed in m and such that g; € w§°" for each i < n.

A proof can be found in [18]. It it easy to see from the above theorem that the
ps-models preserve reachability.

Fig. 2 shows the relations between ps-models and some other well-known
classes of models considered in the literature. A proof and an extended compar-
ison, including also other classes of models, can be found in the full version of
this paper [18].

5 A Minimization Algorithm for Ps-Models

Ps-models can be generated using a modification of the well-known minimization
(partitioning) algorithm [5]. In order to give the algorithm, we introduce the
following notions:

By a partition IT C 29 of the set of concrete states Q of A we mean a set
of disjoint classes X C @ the union of which equals @. For a given partition I7
of Q, X,Y € Il and e € FE we introduce the functions:

e pre.(X,)Y)={z€X|yeY :z5y}
e poste(X,Y)={yeY |Ixe X 25>y}

In order to generate ps-models, instead of a partition of @), we use a d-cor-
partition IT C 29 x 29 x (INU {oo}), defined as a set of triples of the form X =
(X, Xc°" dpt(X)), where IT|; (i.e., the projection of II on the first component)
is a partition of Q, and X°°" C X By q € X we mean that g € X. Define
X 5 Y iff X 5 Y. Moreover, we introduce

o Preg(X) ={Y € IT | pre(Y, X) # 0}, Preqr(X) = U,ep Preq(X),
e Post(X) ={Y € IT | post.(X,Y) # 0}, Posty(X) = Ueer Posts (X).

A class X is reachable if there is a concrete state q € X which is reachable.

Below, we introduce the notion of ps-unstability. Intuitively, a class is ps-
unstable w.r.t. its successor Y in I7 if there is no predecessor of Y with a minimal
depth such that its cor contains only states with successors in Y°°" (see also
Fig. 3).

Definition 9. Let IT be a given d-cor-partition, and )?, Vel
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Fig.3. Ps-stability and ps-unstability

e The class X is ps-unstable w.r.t. Y iff for some e € E we have pre.(X,Y) #
@, and for all h € E and all )/(\1 € IT such that )/(\1 A Y and dpt(Xy) is
minimal in {dpt(X]) | )/(\{ € Prepg(Y)} we have preh(Xc"’ Yyeor) £ Xgor,

e IT is ps-stable iff (G |1,V |1), where G |= (II |1,[q°], =), is a ps-model
with X" and dpt(X) satisfying Def. 8 w.r.t. X for each Xel.

Ezample 2. Fig. 3 illustrates the notions of ps-stability and ps-unstability. Con-
sider classes X X; 1 Y ofa partition IT with the components dpt as shown in the
figure. In the part (a), both the classes X and X, are ps-stable w.r.t. Y, since all
the states of X°°" have successors in Y °°", and X is the predecessor of Y with
the minimal depth. In contrary, in (b) both the classes are ps-unstable w.r.t. Y,
since its predecessor X does not satisfy the required condition.

The minimization algorithm for ps-models is a modification of the algorithm for
s-models [10]. It starts from an initial d-cor-partition IIp, in which the compo-
nent dpt of the class containing ¢° is equal to 0 and its cor is the singleton
{q°}, whereas for all the other classes X € Iy, dpt(X) = oo and X" =
X. Then, it constructs a minimal model M?% = (Gh>. V), where Gby, =
(I1%%, ([¢°], {¢°}, 0), —), IT®! is the reachable part of a ps-stable partition II ob-
tained by a refinement of IIy, I1 |; is compatible with ITj |; (i.e., each class of
IIy |y is a union of classes of IT|1), and ¢° € ([¢°],{q"},0). The algorithm is pa-
rameterised by a non-deterministic function S’plit()? IT), defined for the classes
X € IT with dpt(X) # oo (the explanation for considering these classes only will
be given later). The function refines IT by choosing a class ¥ € IT w.r.t. which X
is ps-unstable, and then splitting either X, or a class X, € O sit. dpt(X1) is min-
imal in the set {dpt(X7) | Xl € Prep(Y)}, in order to make X ps-stable w.r.t.
Y. Before defining the above function, we introduce another function dpt(X),
defined for X € IT|;, which is used for computing the component dpt(X) when
a new class X is created. The function returns a value which is a possible depth of
X determined by the analysis of the classes Y € IT for which there is e € E s.t.
pree(Y, X) # 0 (notice that the components dpt of the classes in a given step of
the algorithm can differ from their depths in the model obtained when the algo-
rithm terminates). More precisely, dptr([q°]) = 0, dptp(X) = 1+ min{dpt(V) |
VeIl N pre.(V,X) # 0 for some e € E} if there exists VelandeecE
such that pre.(V,X) # 0 and dpt(V) # oo, and dptj;(X) = oo, otherwise. For
X,Y e II st. pre«(X,Y) # 0 and pre.(XT,Y°") # X for some e € E,
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Fig. 4. The four cases of the function Sp

we define also an auxiliary function Sp()? , )?, e, IT), which splits X wrt. Y as
follows (see also Fig. 4):

L Sp(X,Y,e IT) = {(X,pree(X°",Y°"),dptr (X))}
if X is pseudo e-stable w.r.t. (Y,Y°°" dpt(Y)), i.e., prec(X°°",YT) # 0;
2. Sp()?,?,e,ﬂ) =
{(X \ X, pre.(X,Y<or), dpty (X \ X)), (Xear, Xoor dptn(xcor))} if X
is pseudo e-unstable w.r.t. )7, ie., pre.(X°T,YT) = QA pre.(X,Y") # 0;
3. Sp(X,Y, e, IT) = {(X, pre.(X°°",Y), dpt (X)), (Yer,Yeor dpty(Yer)),
(Y\Yeor, Y\Y°r dptp(Y \Y")))} if X is semi e-unstable wr.t. Y, i.e.,
pree(X T, Y ) = pre (X, Y ") = O A pre. (X", Y) # 0;
4. Sp(X,Y,e,IT) = {(pre.(X,Y), prec(X,Y), dptn (pre.(X, Y))),
(X \pre.(X,Y), X" dptp(X \preeLX, Y))), (Yeor,Yeor, ei\ptn(Ycor)), (Y'\
Yeor Y\Yer dptp(Y \Y®)))} if X is e-unstable w.r.t. Y,
i.e., pre.(X°, Y ) = pre.(X,Y°") = pre.(X°",Y) = 0.

Then, we define
e Split(X, IT) = {X} if X is ps-stable w.r.t. all ¥ in IT.

Otherwise, a class Y and a transition e € E are chosen, for which pre.(X,Y) # 0
and X is ps-unstable w.r.t. Y, and then

a) if dpt(Y) > dpt(X) + 1, then Split(X, IT) = Sp(X,Y e, IT);

b) if dpt(Y) < dpt(X) + 1, then we choose a class X, s.t. for some h € E we
have preh(Xl, Y)#0, preh(Xf"r Y) # X§°" and dpt(X;) = min{dpt(X}) |
X’ € Pre;(Y)}, and Split(X,IT) = Sp(Xl,Y h, IT).

Intuitively, if X is ps-unstable w.r.t. Y and from the analysis of IT of a given
step we can assume that in the model obtained when the algorithm terminates
X will be the predecessor of Y of the minimal depth, then we apply to these
classes the appropriate case of the function Sp. Otherwise, i.e., if dpt(Y) indicates
that ¥ has another predecessor with a depth smaller than dpt(X), we apply the
function Sp to Y and to its predecessor of a smallest value of dpt (see also Fig. 5).



