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Preface

Tn the last two decades a large number of investigations in
different areas of physics have been devoted to the study of non-
linear wave processes, for instance, various questions relating to
the theory of plasma and nonlinear optics (except the classical
problems of hydrodynamics). Simple 'model’ nonlinear wave equations
were constructed in the course of the development of the nonlinear
wave theory; in some sense, these equations are universal, i.e., they
may be encountered, just like the classical d'Alembert linear equation,
in diverse physical problems. Examples of such equations are the
Kortweg-de Vries equation (KdV), the nonlinear Schrodinger equation,
and the sine—-Gordon equation. These equations exhibit, at least
in the one-dimensional case, a remarkable mathematical property.

They possess hidden algebraic symmetry, as a result of which they

can be 'integrated' by the so-called inverse method for an auxiliary
linear operator. This book is largely concerned with this method

and its generalization, the main purpose being to give an elementary,
as far as possible, presentation of this method and all the necessary
preliminaries from the theory of scattering, Riemann surfaces, Hamil-
tonian systems and others. A special chapter is devoted to the
asymptotic behavior of solutions over large time intervals. 1In
certain cases important qualitative results may be obtained by means
of the methods that are not related to the scattering theory (see §
4, Chapter IV) but resemble the classical 'averaging method' of
Bogolyubov and others.

To illustrate the 'universality' of KdV and of the nonlinear
Schrodinger equation, we give their derivations for certain physical
problems in the Introduction.

The history of the inverse scattering method dates back to
the works of Gardner, Greene, Kruskal and Miura [3]1. Today the
literature dealing with the inverse method runs to several hundreds
of papers and they hardly yield to a survey. In this text we cite
only those reviews and collected works that deal with the development
of this new method [1 - 26]. We felt it necessary to supplement the
references with a list of fundamental works, i.e., [27 - 401 for
Chapter I, [41 =511 for Chapter II, [52 - 59, 63] for Chapter III
and [60 - 62] for Chapter IV. Appendix references start at [66].

v



vi PREFACE

We shall briefly trace the history of the soliton theory pre-
ceding the publication of [31,

A soliton solution for long waves on the surface of a liquid
was first found by Boussinesq in 1872, The KdV was first derived by
Kortweg and de Vries in 1895; they expressed periodic (cnoidal) waves
in terms of elliptic functions. In the succeeding years these results
were improved step by step, ending in a strict proof presented by
Lavrent'ev and Fridrikhs to demonstrate the existence of solitons
on the surface of a liquid of finite depth. The history of this epoch
can be found in the excellent book by Stoker [141.

Interest in solitons was revived in connection with plasma
studies. In 1958, Sagdeev [13bl] postulated that solutions can propa-
gate in plasma similar to solitons on a liquid surface. Gardner and
Morikawa [4] noticed a direct analogy between the equations for
shallow water. From this point onwards the KdV gains general recog-
nitions in physics and soon attempts were made to use it in various
wave topics (Whitham [15a]). At the same time, advances in nonlinear
optics (Akhmanov and Khokhlov [1], Bloembergen [2]1) diverted the
general attention to three-wave parametric interaction and later to
the nonlinear Schrdédinger equation (Kadomtsev and Karpman [8]).

The discovery of the inverse scattering method was preceded by
numerical simulation of the KdV. As early as 1954, Fermi, Pasta and
Ulam [161, while studying the behavior of a nonlinear oscillator
system with the help of a computer, detected anomolously slow sto-—
chastization of this dynamical system. In 1964 Kruskal and Zabuskii
[3], using digital simulation, concluded that solitons in the KdV
formalism suffer elastic collision. This result gave an impetus to
new analytical studies. Soon an unending series of laws of conser-
vation were discovered and finally, in 1967, this progress was crowned
with the discovery of the inverse scattering method [3].

Further development of this method began with those works which
revealed the algebraic mechanism underlying the technique used in
[3]; a theory was developed for the KdV as a Hamiltonian system.
Already in the early seventies other types of important nonlinear
equations were known that could be integrated by the inverse scat-
tering technique - the nonlinear Schrddinger equation, sine—Gordon
equation, in particular. A scheme for determining the periodic
solutions, which needs a profound use of the Hamiltonian formalism
in combination with algebraic geometric techniques, was only found
in 1974-75 even for the KdV. This epoch is reviewed in [6]. The
recent advances cover the following topics: 1) new physically
important systems that can be integrated by the inverse scattering
method or its generalizations; 2) development of scattering tech-
niques and geometric methods for finding the solutions; and 3)
construction of quantum relativistic invariant models in which exact
integrability is conserved.



PREFACE vii

We feel that the potentialities of exact solutions known today
have still not been put to full use in calculating physical effects.
We hope, however, that this book, while of help in mastering the
inverse scattering method - undoubtedly one of the most elegent dis-
coveries of mathematical physics in the 20th century - will also aid
in advancing its applications.

V. E. Zakharov, S. V. Manakov,
S. P. Novikov, L. P. Pitaevskii
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Introduction
Weak Nonlinearity and Dispersion

A wide class of wave processes occurring in various homogeneous
media are usually described by a wave equation of the type

i L (D

0 92 ?

which describes the propagation of persistent waves travelling with
a constant velocity uo. Three main assumptions are made in deriving
this equation. First, there is no dissipation, namely, Eq.(1) is
invariant with respect to time inversion: t - -t. Second, the
amplitude of oscillations are sufficiently small. Consequently,
the terms nonlinear in ¢ are small, and therefore they can be dis-
regarded. Finally, in the wavelength range under consideration
there should not be any dispersion, i.e., propagation velocity
should not depend on the frequency and wavelength. Generally (the
case considered in the beginning), this means that we can take the
wavelength to be quite large.

Note that Eq.(1) is universal — its formdoes not depend on the
specific properties of the medium; they affect only the velocity
Us. If we reject these three assumptions, viz., absence of dis-
sipation, nonlinearity and dispersion, then, Eq.(1), of course,
ceases to be versatile, and each medium has to be described by its
own system of equations. Surprisingly, however, if these three
effects are not rejected altogether, but are assumed to be small,
once again we obtain an equation whose form is the same for a wide
class of phenomena.
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Korteweg - de Vries Equation. The first question that arises
here is whether there is any sense in accounting for these small
corrections, i.e., is there any case where these small corrections
give rise to new qualitative effects? Otherwise they would have
certainly been devoid of interest. It is a simple matter to under-—
stand that if these processes were to last for a long time, all these
effects would essentially change the solution. Indeed, even a neg-
ligible amount of dissipation of energy, if it were to persist over
a sufficiently long period, would lead to decaying of waves. Dis—
persion would blur the wave packet: this would, in a sufficiently
large time period, so distort the solution that it can hardly be
recognized. As regards nonlinear effects, we can say that they are
responsible for "steepening the front" in the solution - a phenomenon
which is in no way negligible.

Our aim here is to derive an approximate equation that would
correctly describe these 'large effects due to small corrections'.
We shall confine ourselves to conventional systems, thereby completely
disregarding dissipation.

The solution of Eq.(1) in the form of a sum of two waves trav-
elling in opposite directions is

P =1 (@ — uot) + P2 (z + uo?). (2)

It is easy to verify that if the small nonlinearity and dispersion
are taken into account, we can treat waves travelling, independently
of each other, in different directions. The physical reason for

this is that these waves move past each other so fast that the cor-
rections fail to get 'accumulated'. Hence we can considerably sim~
plify the problem. Each wave in (2) satisfies a first-order equation:
a wave travelling in the positive direction of x~axis, in particular,
satisfies the equation

IZ] I7;
%+uo%=0. (3)

We thus have to search for the correction precisely for this equation.

It is a simple matter to find the correction due to dispersion.
In the medium we are dealing with, let the exact law of dispersion
for linear waves be of the form

o = ku (k). (4)

As k = 0, the velocity u should tend tou,. In general, u(k) is an
analytical function of k which can be expanded as a power series in
k. We can readily show that, in the absence of dissipation, this
expansion is a power series in k?. Indeed, the dispersion law (4)
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is derived from a certain system of linear differential equations
with real coefficients. Therefore, the solution of this system can
be represented as a dependence of iw on ik with real coefficients.
In order that ® in (4) may be real (indicative of no dissipation),
it is necessary that u should be expandable in even powers of ik.

By virtue of the aforementioned, for small k, the function
w(k) can be written with due regard only for the first corrections:

® = ugk — Pk°. (5

Immediately, it is evident that in order to obtain a correct disper-
sion law (5), we have to add a term containing the third derivative
to (3):

o (4] P
3¢ T U5, +p =0. (6)

O0x8

Now we shall take up nonlinearity. This is more convenient to
do if we take into account that for the traditional systems, which
we are dealing with here, exact laws of conservation of certain
quantities always hold valid. (It may be the law of conservation of
the number of particles.) Write one of these laws as

o, O _ 7

(Since in linear approximation all oscillating quantities satisfy
the same wave equation, we can always assume that Eq. (1) is written
for the perturbation of comnserved quantity ¥.) Derivation lies in
approximately expressing j through ¥. From a comparison of (6) and
(7), it is seen that in an approximation linear in ¥ we have j =

uoy +83%y/3x*. In the next approximation, a term containing the
second power of ¥ appears:

=ugp+ BEE -+ 5y,

where o is a constant. Thus we obtain the unknown equation contain-
ing the first nonvanishing corrections:

% ayP
s +a‘l|J 'ﬁ'=0- (8)

A A S
o Tl B
Now on making the change of variables:

B

E=x—ue, P=--1.
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our equation reduces to the conventional form of Korteweg—-de Vries
equation:

m , om

In order to avoid misunderstanding, let us note that these
considerations cover most general cases where there is no special
reason to take account of the nontypical dispersion relations and
nonlinear terms. Nevertheless, we can imagine a case, where by
virtue of symmetry considerations, the expansion of j may contain
only odd powers of y. Then, nonlinearity of the type n29n/3x will
appear in (8). Probably, more complicated nonanalytical functions
j(¢) may also exist. The procedure of deriving the KdV is quite
convenient in real calculations, because the coefficients o and B
can be determined independently.

We shall illustrate this procedure by a few examples. First,
let us determine the coefficient o in the hydrodynamics of a medium
with polytropic equation of state p = coY. (For adiabatic motion of
an ideal gas with constant heat capacity, Y is equal to the ratio of
heat capacities cj/cy.) We shall use the change in the density
o'(p = po + 0", where pgy is the unperturbed density) as the quantity
y. Then Eq. (7) turns into the equation of continuity

8p
Bt

+HE =0, (9)
which has to be supplemented with the Euler equation:

av 1 9 _L_?L 10
L R E Eamirae o (10)

Correct to the second-order terms, we can exXpress the relationship

between p and p' as p = Pg = ug (p' + %gl p'2), where u, = (dp/dp)%
o

is the ‘unperturbed' wave velocity. The system of equations (9) and

(10) can therefore be represented, correct to the second-order

terms, as

op' v 3 {p'z

5 TP 5 = aF;)’ an
Mo w0 —D ot 1 o2

at oy O 202 oz 2 9z’

To eliminate v, differentiate the first equation with respect to t

v

and substitute T from the second equation. Thus, we obtain
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d o\ 2\
(a_z_u"%) (W+”°3;)P = )

Rlpw) | 4 O 1wy 9% 12
~ Tézat +'2_p° Oz + 2 Tpp 022 ¢ (12)

Now, in the left-hand side of (12) we can, with sufficient accuracy,

. D 8 _ . 8 . o .

make the substitution 3f T Yoaz © 2u°3x’ and in the right-hand side,
u

take 2 = u 3 and v = —2u'. (The last approximation follows from

at 00x
the preceding equality or from any equation in (11).) Eliminating

% in the left-hand and right-hand sides, we obtain

IR
¢= 2po

Ug. (13)

We shall now apply these results to an important case of ion
acoustic waves in collisionless plasma, for T, >> T;. Here for ioms,
we can apply the hydrodynamic equation, neglecting the thermal
scatter of velocities:

v o _ Ze 39 .
S R il ot (14)

where M is the mass of ion.

Electrons can be taken to be distributed according to the
Boltzmann law: ’
n, = Znye™® e
(n, is the equilibrium density of ions), so that the Poisson equation

for the potential ¢ takes the form

Ap = —bne (Zn; — Zn¥Te). (15)

To determine the coefficient a, we shall disregard dispersion, in
other words discard the second derivative in Eq. (15). Thus, in
place of (15), we obtain quasi-neutrality condition

eQ n
= In-— .
T, Ty

Substituting e¢ found from this relationship into (14), we obtain

v v ZTe Vni
% TV =T a (16)

This is a simple hydrodynamics equation, in which the velocity of
sound is u, = VZTe7M, and the polytropic exponent is y = 1.
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Therefore for this case we have

Uy ZT, 1

e

o 17
Mn, M Mn," an

=

In order to determine B, we s?all linearize Eq. (14), assuming that
all quantities are n~ el{k¥ Wt

—iop = — ikZeg/M,

and using the Poisson equation
(luthoe! + k’) o= hnZen;

and the equation of continuity

—ion; 4 iknyy = 0.

On equating the determinant of this system to zero, we obtain the
law of dispersion

77, , 7T, 1\ o /2T
7 k(1 4- 2D/ = 7 k___z_ Me kD2,

where D = VT /(4W2n eZ) is the Debye radius of electron screening
in plasma. Thus, the coefficient B in (8) is

B = Y,D*YZTJM. (18)

A classical example of the application of the KdV is the problem
of wave propagation in shallow water (in 1895, it is precisely for
this case that Korteweg and de Vries derived this equation). To
find o, we shall write the equation for infinitely long waves (k>0).
Let h be the varying thickness of the liquid layer. Assuming that
the liquid is incompressible and that the liquid in a thin layer
flows almost over its surface, write the equation of continuity as
follows:

oh_ | 9 (hv) _
ot oz 0. (19)

The equation for the velocity takes the form

o o oh
K "a i A P (20)
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since the change in the potential energy of a liquid layer with the
thickness h is dU = gpdh.

The system (19) and (20) once again formally coincides with
the system of equations of hydrodynamics if h is taken to be the
density and pressure is assumed to be equal to gh?/2. Then

up =V ghyy 7 =2, 1)

so that in the equation for h'
o = 3/2p g/ho-

To determine B we have to solve a linearized problem of vi-
brations with finite wavelen%th in a layer of thickness h,. The
dispersion law for this casel4 takes the form

© o Vghy [k — Y, (khg)?).

Thus, in this case

B =1V ghoh}. 22

Nonlinear Schrddinger Equation. The nonlinear terms in the
wave propagation equation considered in the previous section have,
in general, the same type of nonlinearity as in the hydrodynamics
equations. They are expressed in terms of the values of a varying
parameter at the same time instant and its derivative. In other
words, they are of 'local' nature. If, at the initial instant,
perturbation was harmonic in time, this type of nonlinearity would
rapidly give rise to higher harmonics and distort the initial pro-
file.

Various other types of nonlinearity also exist. TFor instance,
consider the electron plasma oscillations. (This example will be
considered quantitatively later. Here we are interested in the
general nature of the phenomena.) These oscillations take place
with the electron plasma frequency W, = V4ﬂnee§/m. Ions, because
of their higher mass, will virtually not take part in these oscil-
lations. But, by virtue of quasi-neutrality, ion density should be
equal to the electron density, which cannot have a variable component
with frequency of the order of wos This situation does not, never-
theless, hinder plasma density from varying due to the time-averaged
force acting on plasma in the field. Such a perturbation, time-
invariant in the first-order approximation, will depend on time-
average of field-dependent quantities. In weak fields hardly
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differing from harmonic ones, this Implies that the dispersion law

is dependent on l Y, |2, where Y, is the complex-valued field ampli-
tude ¥ = Y, exp [i(kx-wt)]. Such a type of nonlinearity readily
arises on heating a medium, because if w >> v (v is the effective
number of collisions), temperature will not be able to keep pace with
the field oscillations, and is determined by its mean value.

It is a simple matter to obtain an equation that takes account
of this type of weak nonlinear corrections for fields hardly dif-
ferent from harmonic ones., Let the field be of the type

P — P eilior-an), (23)

where Y, varies slowly both in space and in time. Then, the spectral
expansion of the field would contain only wave vectors close to k.
Therefore, the right—-hand side of the dispersion equation w = w(k)
can be expanded in powers of k — ko:

© = o (ko) + uo (k — ko) + B (k — ko)™ (24)

For this dispersion law, we obtain the linear equation

i 2 ogp o+ uo (.iix—k())\wﬁ(ii%—ko)z . (25)

14

If the field in the form of (23) is substituted into (25), then Y,
is given by the following equation:

(2 up 2) = —p 2

"z 922
What now remains is to account for the nonlinearity. From the
aforementioned, it follows that this nonlinearity is exhibited in
the form of a dependence of the dispersion law on | Vo |. 1In the

first approximation we can only account for the function w(k,), and
take only a correction of the order of | yq |2:

(ﬂ(ko)=ﬂ)o+a|¢|2-

Combining these equations, we obtain
. (O 7} 0? ;
G+ ) = = BEE el e (26)

1f the right-hand side is equated to zero, this equation describes
the propagation of a wave packet with a group velocity of ug =

0 Ly . . . .
GEE) K=k’ The right—-hand side accounts for dispersion and non-

linear corrections.



