SOFTWARE EVOLUTION

THE SOFTWARE MAINTENANCE CHALLENGE

-~ Lowell Jay Arthur

A 9859-2
i/

Q@
@]
(@)
A%
=3
%)
o

SOFTWARE EVOLUTION

THE SOFTWARE MAINTENANCE CHALLENGE

Lowell Jay Arthur

el

I wﬂﬂ
l

il

I

A Wiley-Interscience Publication
JOHN WILEY & SONS

New York / Chichester / Brisbane / Toronto / Singapore

Copyright © 1988 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the
1976 United States Copyright Act without the permission
of the copyright.owner is unlawful. Requests for
permission or further information should be addressed to
the Permissiong Department, John Wiley & Sons, Inc.

]

Library of Congress Cataloging in Publication Data:

Arthur, Lowell Jay, 1951-
Software evolution.

“A Wiley-Interscience publication.”
Bibliography: p.
1. Software maintenance I. Title.

QA76.76.S64A78 1987 005.1'6 87-20972
ISBN 0-471-62871-9

Printed in the United States of America
10987654321

Software Evolution

Preface

In the software community the word “maintenance” has acquired a
deadly negative connotation. An ugly word, “maintenance.” It seems to
imply that there is something desperately wrong with a software product
(it must be someone’s fault) and that the workers who slave over it are
nothing more than blue-collar mechanics.

That’s why this book is dedicated to software “evolution.” As busi-
nesses grow, software must grow. As technology improves, software must
evolve to match the technology. Every system—government, business, or
personal—is in a constant state of flux, changing, growing. Software
must evolve to meet the growing needs of these complex organizations
and of people.

Software maintenance has been evolving at the same time as software.
The five stages of maintenance maturity have been described as: chaos,
concern, methodology, measurement, and control. This book will help you
establish a repeatable maintenance process. You’ve probably already ex-
perienced chaos and concern. I also speak briefly about measurement. I
developed these thoughts more fully in Measuring Programmer Produc-
tivity and Software Quality, published by Wiley, 1985. Somehow, I put the
cart before the horse. Having the sort of quality control that delivers
high-quality software productively is still a distant goal for most organi-
zations. This book will help you reach the third level of maintenance
maturity—a productive, high-quality, maintenance process.

Actually most software maintainers are involved in software evolu-

vii

viii PREFACE

tion, not maintenance. In a typical software maintenance environment,
corrective maintenance (fixing defects) consumes less than 10% of all re-
sources. The rest focus on software evolution.

The software evolution process is shown in Figure 1. Evolution begins
with a request for change and ends with the release of a software product.

As shown in the center of the figure, this book describes three types of
maintenance: corrective (fixing software), adaptive (enhancing software),
and one you may not have thought of, perfective (improving software
quality). These are identical to the functions of an automobile mechanic:
they fix problems, add radial tires or performance equipment, and change
the oil or tune up the engine. Software maintainers often perform the
first two but forget to take time out to fine-tune the software to prevent
defects or to make it easier to enhance. Doing all three types well is
essential to successful software evolution.

This book will describe what you need to do to establish a healthy,
effective, evolutionary environment for supporting existing systems.
Some of the key items are change control, system releases, configuration
management, and software-maintenance management.

Chapters 7 and 8 will cover every aspect of perfective maintenance,
from choosing software candidates to reengineering the software to im-
prove its quality. These two chapters can teach maintainers and devel-
opers a lot about keeping software on the evolutionary ladder.

There is a method to this book’s madness. It discusses the software-
maintenance process in chronological order. Chapter 2 talks about enter-
ing a request for change, and Chapter 10 covers releasing the finished

Human Testing
A

/ A\

Computer Testing
A

>4 Corrective r \

—

r N

Plan

Change Impact i i System

Management Analysis szls;:;ne Adaptive Code Testing Release
. J

)

Perfective

N
Figure 1 Software evolution process

PREFACE iX

product. Chapters 11 and 12 cover how to implement and manage a pro-
ductive, high-quality maintenance environment.

I feel that a stationary maintenance environment is one headed for
extinction. And that’s what this book is all about: the evolution of soft-
ware and the environment that supports it. They change constantly.
Keeping up, or even getting ahead, is the software-maintenance chal-
lenge.

LowELL JAY ARTHUR

Denver, Colorado
September 1987

8862720

To Tom Prieve,
Many thanks

Bl ¥ &

Contents

1.

Software Evolution and Maintenance

The Software Life Cycle, 3

Software Evolution Activities, 5
Maintenance and Development Differences, 6
The Maintenance Process, 7

Software Evolution, 11

Summary, 12

Change Management

Change Management, 16

Change Requests, 19

Change Request Contents, 20
Evaluating Change Requests, 31
Implementation Considerations, 31
Summary, 35

Impact Analysis

Impact Analysis, 42

Impact Analysis Example, 45
Estimating Resources, 57
Summary, 67

Xi

15

39

Xii

4. System Release Planning

Release Planning, 74
System Release/Version Description Document, 77
Summary, 88

5. Corrective Maintenance

Corrective Maintenance Concepts, 92

Problem Solving, 96

Hypothesis Development, 99

Hypothesis Testing, 101

Problem Resolution, 104

Hypothesis Development and Testing Example, 105
Summary, 112

6. Adaptive Maintenance

Adaptive Maintenance, 118
Requirements Definition, 120
System Design, 120

Data Design, 128

Program Design, 132

Design Guidelines, 136
Summary, 137

7. Perfective Maintenance

Perfective Maintenance, 142

Selecting Perfective Maintenance Candidates, 143
Pareto Analysis, 146

Quality Improvements, 147

Summary, 151

8. Reengineering Source Code

Restructuring Code, 156
Maintainability and Flexibility, 157
Reusability, 161

Reliability, 163

Efficiency, 165

Restructuring Code: An Example, 166
Reengineering Code: Guidelines, 171
Evaluating Reengineered Code, 175

CONTENTS

71

91

115

139

153

CONTENTS

10.

1.

12.

Coding Tools, 177
Summary, 178

Software Testing

Testing, 182
Maintenance Testing, 182
Testing Types, 193
Testing Strategies, 197
Testing Tools, 202
Summary, 204

System Release and Configuration Management

System Release, 207
Configuration Management, 214
Summary, 221

Implementing Software Evolution

Critical Success Factors, 224

Types of Maintenance, 226

Software Development, 227

Software Evolution, 229

The State of Software Maintenance, 231
Evolution, 232

Summary, 235

Managing Software Maintenance

Software Maintenance, 238

Software Evolution Objectives, 240
Software Development, 240

Software Evolution, 242
Software-Maintenance Organization, 243
Motivation, 243

First Steps, 245

Summary, 246

Bibliography

Index

xiii

181

207

223

237

249

251

CHAPTER

1

Software Evolution and
Maintenance

In many ways software maintenance fails to describe the daily activities
of the hordes of programmers and analysts who work on existing soft-
ware. They constantly change software to meet the evolving needs of
business, applications, and technology. In a typical environment these
people actually spend less than 10% of their time fixing defects. They
spend the majority of their time on enhancements—software evolution.
Throughout this book you will see software maintenance and software
evolution used interchangeably. Software maintenance means to preserve
from failure or decline; software evolution means a continuous change
from a lesser, simpler, or worse state to a higher or better state.

Because most organizations depend heavily on existing software sys-
tems, software maintenance is a critical function. Supporting these sys-
tems is the mission of the software maintainer.

To help you accomplish this mission, this chapter will:

* Explain the functions and flow of the software maintenance process.
1

2 SOFTWARE EVOLUTION AND MAINTENANCE

* Define the three types of software maintenance: corrective, adaptive,
and perfective.

* Identify the factors critical to successful, productive maintenance
and evolution of software.

The major concern of software staffs today is how to maintain the
existing portfolio of programs. Consider the following maintenance prob-
lems:

1. Most computer programs are difficult and expensive to maintain.

One Air Force project cost $75 per line of code to build and $4000
per line to maintain.

Software maintenance costs $300 billion each year worldwide,
and demand is rapidly increasing (Martin 1983).

Over the past 15 years the budget for maintenance has increased
from approximately 50% of the resources expended on applica-
tion software to 70-75%

Each new development project adds to the maintenance burden.
“Add little to little and you have a big pile!”

End-user applications on micros, minis, and information centers
will require maintenance.

Demand for maintenance already exceeds the capabilities of
most maintenance organizations. The user departments of
businesses are programming many of their new applications.
If maintenance is not managed and improved, demand will
easily exceed available programming resources for both DP
professionals and end users.

2. Software changes are poorly designed and implemented.

Design documents are rarely examined and updated to reflect
changes to the system.

A carelessly planned system takes three times as long as esti-
mated to complete; a carefully planned system takes only
twice as long.

Difficult-to-maintain systems are ultimately rewritten at great
expense.

The two years following the release of a new product are spent
implementing enhancements to bring the system up to the
user’s expectations.

Most major enhancements are so poorly understood and imple-

THE SOFTWARE LIFE CYCLE 3

mented that several additional releases are necessary to clean
up the enhancement.

3. The repair and enhancement of software often injects new bugs that
must later be repaired.

To resolve these problems and manage the growing software inven-
tory, improvements are needed in the skills and productivity of maintain-
ers, and in the quality and effectiveness of their work. This text focuses
on helping you accomplish these goals.

To begin with, maintainers and managers should recognize that:

* Not all system maintainers are created equal, but they can be
educated to equivalent skill levels.

* The difference between the best and worst performers is at least an
order of magnitude.

* The reason for this disparity is a difference in the level of knowledge
and skill, often referred to as breakthrough knowledge.

* The best performers can execute the key software maintenance activ-
ities more effectively than their counterparts.

* No single activity, or area of expertise, accounts for the differences.

* The key to maintenance productivity is to do most things a little
better or faster (Peters 1985).

* A little more knowledge and skill multiplied over many activities
produces striking differences in performance.

Providing maintainers with the lastest knowledge, skills, and tech-
niques to achieve their mission by performing the key software mainte-
nance activities a little better will reap significant productivity and qual-
ity improvements.

This text describes techniques for resolving many of the problems pre-
viously discussed. It describes the methods, tools, and techniques to im-
prove your productivity and the quality of the software being maintained.

1. THE SOFTWARE LIFE CYCLE

The software life cycle covers the period from conception to retirement of
a given software product. There are many definitions of the software life
cycle. They differ primarily in the classifications of phases and activities.
One traditional model is shown in Figure 1.1.

81940 8yl| asemyos 'L ainbig

mo:mmv%m:ms_ %G1 %/ %S %e %e
pue 3 sid < usisaq usisag vonIliysg
ity e e pajielsg Kleuiwiaiy Sjuswalinbay
aseyd

aoueuajuiep

seseyd juawdojarag

SOFTWARE EVOLUTION ACTIVITIES 5

As this diagram shows, for many large software systems, only one-
fourth to one-third of all life-cycle costs are attributed to software devel-
opment. The lions share of the effort and costs are spent in the operations
and maintenance. (Note that the percentages indicate relative costs.)

2. SOFTWARE EVOLUTION ACTIVITIES

Software evolution consists of the activities required to keep a software
system operational and responsive after it is accepted and placed into
production. These activities include:

Correcting defects (maintenance)
Enhancing software functionality (evolution)
Improving the quality of existing software (maintenance)

In general, these activities keep the system in sync with an evolving,
expanding user and operational environment. Functionally, software
maintenance can be divided into these three categories:

Corrective Corrective maintenance focuses on fixing defects. Defects
refer to the system not performing as originally in-
tended, or as specified in the requirements. There are a
variety of situations that can be described as corrective
maintenance. Some of them include:

Correcting a program that aborts.
Correcting a program that produces incorrect results.

Corrective maintenance is a reactive process. Defects gen-
erally need to be corrected either immediately or in the
near future.

Adaptive = Adaptive maintenance includes all work related to chang-
ing how the software functions. Adaptive maintenance
includes system changes, additions, insertions, dele-
tions, modifications, extensions, and enhancements to
meet the evolving needs of the user and the environ-
ment in which the system must operate. Adaptive
maintenance is generally performed as a result of new
or changing requirements. Some examples are:

Rearranging fields on an output report.

6 SOFTWARE EVOLUTION AND MAINTENANCE

Changing a system to support new hardware con-
figurations.

Adding a new function.
Deleting a function.
Converting a system from batch to on-line operation.

Making a program more efficient does not affect its func-
tionality. As a result this type of change should be
considered as part of perfective maintenance.

Perfective Perfective maintenance includes all efforts to improve the
quality of the software. These activities can include re-
structuring codes, creating and updating documenta-
tion, improving reliability or efficiency, or any other
qualities such as those discussed in Chapter 7 and 8.
Some specific examples are:

Improving efficiency, maintainability, or reliability
without changing functionality.

Restructuring code to make it more maintainable.
Tuning a system to reduce response time.

Although these three types of work are discussed separately in this
text, much of the work is performed concurrently. For example, enhance-
ments and quality improvements are often worked and tested together.
Design of one program’s changes will overlap the coding of another’s. All
of these activities occur during the software maintenance life cycle.

3. MAINTENANCE AND DEVELOPMENT DIFFERENCES

Although many activities related to maintaining and developing soft-
ware are similar, software maintenance has unique characteristics of its
own, including:

* Constraints of an existing system. Software maintenance is performed
on an existing production system. Any changes must conform or be
compatible with an existing architecture, design, and code con-
straints. Typically, the older the system, the more challenging and
time consuming the maintenance effort becomes. Later chapters will
discuss methods of preventing software extinction.

* Shorter time frames. Software development may span one or more
years, whereas maintenance may span a few hours to cycles of one to

