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Preface

There are a number of standard textbooks on solid state physics. They
present a diversity as regards level and content. However, an observation
of many teachers and students is that while the coverage in these books
is wide, the treatment is not indepth. My attempt in this book is to present
a comprehensive coverage with detailed treatment to meet the requirements
of students of MSc (General) and BSc (Hons). It should also be useful for
chemists, material scientists and electrical engineers. My aim has been to
offer the students a unified presentation of the essentials of solid state
physics with an emphasis on basic ideas to help them clearly understand
the theoretical meaning of these essentials and recognize their experimental
foundations. This will make it easier for them to study the more specialized
periodical literature subsequently.

A short summary of the plan of the book is given here. Chapter One
deals with the crystal structures and their determination. A knowledge of
point and space groups is assumed while describing the structures. The con-
cepts of reciprocal lattice and Brillouin zones are developed. Chapter Two
is devoted to the definitions, determination and interrelationships of the
three fundamental elastic constants of a cubic crystal. The subject of atomic
motion is developed from the standpoint of the force constant model in
Chapter Three, which also includes a quantum description of lattice vibra-
tions through coupled oscillators. This would assume a knowledge of the
definitions of particle operators as developed, for instance, in Merzbacher’s
Quantum Mechanics. 1t is only here that-the student is exposed to second
quantization; lattice specific heats, thermal expansion, equation of state and
thermal conduction are grouped in Chapter Four. The free electron theory
of metals is included in Chapter Five, which gives a coverage of the Boltz-
mann equation as well as the Hall effect. The various theories on energy
bands in solids are dealt with in Chapter Six, which begins with a compre-
hensive discussion of the physical basis of the formation of bands. The
most important concept in the field—Fermi surfaces—is projected as an
abstract mathematical construction in Chapter Seven, along with its experi-
mental studies. The exposition of crystal imperfections and associated physical
phenomena are presented in Chapter Eight, which also includes a summary
of various colour centres. Various theories of magnetism are detailed in
Chapter Nine, which provides sufficient space for spin waves and magnon
dispersion relation. Chapter Ten provides a vivid discussion of bizzare
experimental properties of superconductors and their electromagnetic theo-
ries. The physical basis and properties of a Cooper pair are explained and
form the basis of the BCS-theory and Josephson effect. The chapter finally
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includes a brief description of the most fascinating discovery of high tempe-
rature superconductivity.

The physics of solids is a rather diverse subject and hence it is almost
impossible to cover all areas which fall in this field. Some topics like semi-
conductor physics and dielectric properties have not been included in the
book. I have deliberately refrained from making any direct reference in the
text. to the original literature. For such information, the student should
consult the monographs and review articles listed at the end of each chapter.
Finally, a book like this can lay little claim to originality. I owe a great
debt to the standard texts on the subject, and several others mentioned in
the Bibliography.

C M KACHHAVA
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ONE
Crystalline State

1.1 INTRODUCTION

Most solid substances are crystals, which may be defined on the macroscopic
scale as homogeneous solids, in which some of the physical properties are
function of direction. Microscopically, a crystal may be defined as a solid
having an arrangement of atoms (or molecules) in which the atoms are
arranged in some repetitive pattern in three dimensions. The arrangement
of atoms is termed as the crystal structure. The internal regularity of place-
ment atom in solids often leads to a symmetry of their external shapes.
Rock salt crystals, for example, are rectangular parallelopipeds with faces
which are identical when looked at from several different directions; these
crystals have a high degree of symmetry. Crystalline quartz, on the other
hand, has symmetry of a lower order.

This chapter is devoted to the study of the geometry of atomic arrange-
ments and the symmetry it displays. Vector notations are summoned to
describe some direct and reciprocal lattices. Finally, an experimental study
for the determination of crystalline structure is presented.

1.2 TRANSLATIONAL SYMMETRY

A crystal is said to be translationally symmetric or periodic if there exist
three linearly independent vectors (ai, a2, a3) such that a translation by

‘Rn = ma1 + maz + mas (1.1)

where m1, n2 and n3 are arbitrary integers, brings a point back to an equiva-
lent point in the crystal. Two points are said to be equivalent if they have
an identically same surrounding. Thus, the translational symmetry is
defined by the three vectors ai, a2,
a3 (called the basis or fundamental
vectors), which must not be coplanar.
The end points of vectors defined by
Eq. (1.1), form the space lattice. A
property such as charge density is the
same at all points r + Rg, as itis
atr, i.e., it is periodic in space.

A lattice is completely characteris-
ed by six parameters: three distances
ai, a2, a3 and three angles «;, «, o3
as shown in Fig. 1.1. FIG. 1.1 Lattice parameters
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1.3 UNIT CELL

An ideal crystal may be made up of a set of polyhedral blocks which fit
exactly together. Each block is identical and may contain several nuclei,
each with an associated cloud of electrons. It is called a unit cell and may
be conveniently chosen in a number of different ways.

One obvious way to define a unit cell is as the parallelopiped bounded
by the basis vectors aji, a2 and a3. Even then, the midpoint of the cell can
be arbitrarily chosen although it is usual to centre it on one of the atomic
positions. Figure 1.2 shows for a two-dimensional lattice, two forms of the
unit cell as a parallelogram with different centres.

FIG. 1.2 General two-dimensional space lattice  FIG. 1.3 Triangular plane lattice
showing two forms of the unit cell as |ay| =]a,| and angle
a parallelogram with  different between them is w/3
centres

Another convenient way of choosing the unit cell is to take the volume
bounded by the planes which right-bisect the nearest R,. Such a unit cell is
often referred to as a Wigner-Seitz cell. Figure 1.3 shows two forms of the
unit cell—one. as a parallelogram and the other as a hexagon obtained by
drawing perpendicular bisectors to each lattice vector from a central site.

The unit cell can contain one or more atoms. Naturally, if it contains
only one atom, we put that on the lattice site, and say that we have a
Bravais lattice. On the other hand, if there are several atoms per unit cell,
then we have a lattice with a basis.

1.4 BASIS AND CRYSTAL STRUCTURE

In order to convert the geometrical array of points (the lattice) into a
crystal structure, we must locate atoms or molecules on the lattice points.
The repeating unit assembly—atom, molecule, ion or radical—that is located
at each lattice point is called the basis. Every basis is identical in composi-
tion, arrangement and orientation. No basis contains fewer atoms than a
primitive basis contains.

The crystal structure is thus given by two specifications:

1. the lattice, and
2. the assembly that repeats itself.
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lattice + basis = crystal structure

This relationship is depicted in Fig. 1.4.

1.5 CRYSTAL CLASSIFICATION

a,

FIG 1.4 Two-dimensional lattice. (a) Bravais lattice;

(b) Lattice with a basis of three atoms;

@0 X

The most obvious feature of a crystal is its regularity or symmetry. There-
fore, the basis of classification of crystals is the symmetry exhibited by them.
In a well-defined crystél, the various symmetry elements (rotation, reflection,
inversion etc.) intersect at a point. Each set of symmetry elements intersect-
ing at a point (the centre of the unit cell) is called a point-group. Since
there are 32 point-groups, there are equal number of crystal classes, which
can be grouped together into seven groups known as crystal systems. In
Table 1.1, we list description of various systems. Figure 1.5 shows how seven
crystal systems can be obtained by successive distortion of a cube.

Table 1.1 Seven Crystal Systems

System Crystallographic axes Unit cell

Triclinic a, # 0y 7 az a parallelogram-based skew prism
oy oy ay or parallelopiped

Monoclinic a, # a, 7 as a parallelopiped-based right

Orthorhombic
Tetragonal
Cubic
Trigonal

(Rhombohedral)
Hexagonal

=y = 90°F£ o,

aF a7 a

o = o, = a3 = 90°

a, = a, # ag

2, = oy = ag = 90°

a, = a; = ag

o = oy = a = 90°

a = ay, = @

o = oy = ay 7= 907

ay = ay 7 a,

oy, = ay = 90°, 00y =

120°

prism
a rectangular-based right prism

a square-based right prism
a cube
a rhombohedron

a rhombus-based right prism
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Cubic

®

Tetrogonal Trigonal
Hexagonal, 9

»~~ Orthorhombic

Monoclintc Triclinlc

FIG. 1.5 Seven crystal systems in three dimensions

1.6 DIRECTION INDICES
To find the direction indices:

1. Find any vector in the desired direction.

2. Express this vector in terms of the basis (a1, a2, a3).

3. Divide the coefficients of (a1, a2, a3) by their greatest common divisor.
The resulting- set of three integers u, v, w defines a direction. {uvw) means
all vectors equivalent to [wow]. Negative sign in any of the numbers are
indicated by placing a bar over the number (thus, #).

Let a1 = 2, a2 = 3, a3 = 4 units and the vector be
r=6i+12j+ 10k
Then

r =32 i+ 40) § + 2.5@)k

Thus, the coefficients of (a1, a2, a3) are 3, 4, 2.5. The relevant greatest
common divisor is 0.5. Thus, the three numbers 6, 8, 5 are found. Hence,
for the example considered the indices of direction are [685]. In the cubic
system, u, v, w are proportional to the direction cosines of the chosen
vector.

Further, the cube edge a; would be denoted by [100], and that of direction
a2 by [010], and the negative direction of a; would be [100]. The general
set of all the cube edge directions would be the carets 100 . The face-
diagonals of the cube are { 110 ) and the body diagonals are { 111 ).



Crystalline State 5

Figure 1.6 shows some important directions in the crystals. Note that

1. All parallel rows of atoms have the same [uow].
2. The angle 6 between two crystallographic direction [u1z1w1] and [uzv2w2)
in a cubic system is given by

uiz + 0oz -+ wiws (1.2)
G +oi T W + 0 4 W)

cos 0 =

0% [100] o]

(b) [m1]

FIG 1.6 Notations for directions in crystals. (a) OP
is the direction [uvw], if u, vandw are
smallest integers; (b) some important
directions in the crystal

1.7 MILLER INDICES

To describe a plane ABC (Fig. 1.7) in a lattice:

1. Find the intercepts of the plane on the three axes defined by the basis
vectors (a1, a2, a3) to get the three numbers ny, n2, n3.

2. Take the reciprocals of ni, n2, ns.

3. Divide the reciprocals by their greatest common divisor. The resulting

set of three numbers (hk/) is called the Miller indices for the plane. {hkl}
means all planes equivalent (by symmetry) to (hk/).

Thus, a plane satisfying the equétion
hik:l=mn7" :n3':my! (1.3)
is said to have the Miller indices of (hkl).
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*

FIG. 1.7 Construction for description of a plane
ABC

Note that:
1. A zero Miller index indicates that the plane is parallel to the corres-
ponding crystal axis, e.g., (230) means, the plane is parallel to the as-axis.

(100) plane is parallel to both x2 and x3-axes (Fig. 1.8).
2. A negative Miller index shows that the plane (hkl) cuts the xi-axis on

the negative side of the origin, e.g., (I00) in Fig. 1.8.

(110) (m) (222)

FIG. 1.8 Some of prominent planes for cubic lattices,
with their Miller notations

3. The Miller indices, in fact, represent not a single plane but a family of
parallel planes. For example, Fig. 1.8 shows a plane marked (200); the use
of an integer other than unity for the first numeral indicates that the plane
cuts the aj-axis at ai/2 from the origin. Obviously, (200) and (100) are
parallel planes. Of course, both would be represented by (100). The same

comment applies to (222) and (111) planes.
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4. Miller indices are proportional to the direction cosines of the normal
to the corresponding plane.

5. The normal to the plane with index numbers (hk/) is the direction
Lhkl].

6. The purpose of taking reciprocals in the present scheme is to bring all
the planes inside a single unit cell, so that we can discuss all crystal planes
in terms of the planes passing through a single unit cell.

7. The distance d between neighbouring planes of the family (hk/) is given
in terms of the cube edge a as

_ a
i == (h2 + k2 + 12)1/2 (1-4)

8. Most planes which are important in determining the physical and
chemical properties of solids are those with low index numbers.

1.8 SIMPLE LATTICES

The most highly symmetrical lattices which occur naturally are cubic. These
are, therefore, of some practical
interest and also provide useful simple
examples which help in visualising
the more general case. The simple
cubic lattice has basis vectors

ai=a a=ad a5 =ak
(1.5)
and the unit cell is a simple cube.
The simplest crystal based on this
lattice has single atoms at the lattice
points, as shown in Fig. 1.9. Each a,
atom has six identical nearest neigh-
bours.

The body centered cubic (bcc) lattice may be regarded as two interpenet-
rating simple cubic lattices with atoms at the centre of each cube as well
as at the corners. However, such a description does not show up all the
symmetry of the crystal very clearly. The space lattice may be taken with
the basis vectors

FIG. 1.9 Simple cubic lattice

al=-;—(—’l:+i+’i() az=%(i—j+f()

a3=%(i+j—i<) (1.6)

and a better choice for the unit cell may be the parallelopiped defined by
these vectors as edges or the truncated octahedron constructed by right
bisecting the smallest R, as shown in Fig. 1.10. For the simplest crystal,
which has a single atom at each lattice point, each of these unit cells contains
only one atom. If we had continued to regard this crystal as two interpenet-
rating simple cubic lattices, the space lattice would have contained only
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half the number of translation vectors and the cubic unit cell would have
contained two atoms. Thus that description, while sometimes convenient,
does not show the full symmetry of the lattice.

FIG. 1.10 Body-centred cubic lattice showing two forms of the unit
cell, a parallelopiped with basis vectors as edges and a
truncated octahedron

The face centred cubic (fcc) lattice can be considered as four interpenetrat-
ing simple cubic lattices giving a cubic unit cell with extra lattice points at
the centres of the faces of the fundamental cube. Each point has 12 nearest
neighbours. The full translational symmetry has basis vectors

a=o(j+k0  m=J(k+) a=(i+) (1.7)
The primitive unit cell is again a parallelopiped bounded by these vectors
or alternatively the rhombohedron shown in Fig. 1.11. The parallelopiped
has edges parallel to the basis vectors and the faces of the regular rhombic
dodecahedron are planes perpendicularly bisecting the smallest Rx.

In the hexagonal close packed (hcp) structure shown in Fig. 1.12, the unit
cell is a rhombic prism and the basis vectors are

ar = ai az=—(21-('i\+\/3'j) a3 = ck ©(1.8)
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FIG. 1.11 Face-centred cubic lattice, showing two forms of
the unit cell, a parallelopiped, with edges parallel
to the basis vectors and a regular rhombic
dodecahedron

In this structure, there are two atoms per unit cell separated by the vector

1 ( a a_ » ~
R=—lai+——j+ ck 1.9
> VAR ) . (1.9)
Here, as in the fcc structure, each atom has twelve neighbours, but the
arrangement is slightly different.

FIG. 1.12 Hexagonal close-packed FI1G. 1.13 Close -packed array of spheres.
structure Note the three different possible
positions, A, B and C for the

successive layers

1.9 CLOSE-PACKED STRUCTURES

If the atoms are considered as hard spheres, then the most efficient packing
in one plane is the close-packed arrangement shown in Fig. 1.13. There are
two simple ways in which such planes can be layered on top of one another
to form a three-dimensional structure. In theillustrated layer, the atoms are



