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ABSTRACT

Any finite abstract group can be realized as the automorphism group
of a graph. The purpose of this memoir is to find the realization, for
each finite abelian group, with the least number of vertices possible.

First, the cycle structure of permutation groups is investigated,
and necessary conditions are established for a permutation to represent an
automorphism in a graph with abelian group. Candidates are constructed
for minimal graphs with given cyclic group (representing the unpublished
results of Meriwether in a new format), and the above conditions are then
utilized to show that these candidates are indeed minimal.

These methods are then used to find minimal graphs for abelian
p-groups, first with two generators and then (using induction) with an
arbitrary number of generators. In general, these are suggested by the
minimal graphs of the cyclic groups associated with the generators.
However, exceptions do occur, and they are thoroughly investigated.

Finally, the results are extended to all finite abelian groups. Thus
a complete classification is provided for minimal graphs with given finite

abelian automorphism group.
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INTRODUCTION

The purpose of this memoir is to develop the construction of minimal
graphs having prescribed abelian automorphism group and to completely
determine the permutation group structure of that group in these minimal
cases. To do this, the abelian nature of the desired group must be
exploited to assure that the associated graph attains sufficieng size.
Lemmas for this purpose are developed in Chapter 3. Lemma 3.2a), which
states that no automorphism of an abelian group can consist of a single
cycle of length greater than 2, has long been known but rarely if ever
explicitly stated. Certainly its implications and extensions, some of
which comprise the remainder of Chapter 3 (and all of Appendix B), have
not been sufficiently appreciated.

Chapters 4 through 6 explore the special case of cyclic groups first
investigated successfully but never published by Meriwether [26]. The
construction of his exceptional graphs is carried out in great detail,
since they are not well-known and since the use of the F-diagrams of
Chapter 2 (see also Frucht [11]) makes their description much clearer. As
few readers are familiar with this area, and as no explicit proofs of
minimality exist in the literature, examples are included for small cases
even when unnecessary for the general results. The special situations
involving primes less than 7 (and the exceptional role of the prime 3)
lead to the two parts of Meriwether's Theorem (Theorem 5.4 and Theorem
6.4). The proofs are entirely new and make full use of the machinery of
Chapter 3, whereas Meriwether relied on properties of doubly transitive
groups in his approach. These theorems completely settle the minimality
guestion for cyclic groups. Even the exact permutation structure of the
appropriate automorphism groups is completely determined.

Chapters 7 and 8 extend the results to abelian groups. The number of
vertices in a minimal graph is completely determined, and the associated
permutation group structure is severely limited (being completely deter-

mined with the exception of two cases involving only groups of order 3,
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one involving groups of orders 3, 4, and 5, and one involving groups of
orders 2, 3, and 4). Contrary to the expectations of both Sabidussi [34]
and Meriwether [26], several new classes of exceptional graphs arise in
the abelian case that could not have been foreseen from the results for
cyclic groups alone. In some cases (Lemma 7.13 and Lemma 7.14) graphs
with given 3-group have fewer vertices than would be expected from the
Fundamental Theorem of Abelian Groups. Both 3-groups and 2-groups
(Lemmas 7.15-7.18, 7.23-7.26) give rise to unusual permutation group
structures.

Since the small primes (particularly 3) play such a special role,
Chapter 7 concentrates on p-groups, first for p > 7 and then successively
for p=5,3,2. Chapter 8 coordinates the results to construct an algorithm
for determining the minimal number of vertices a(A) in a graph with
abelian group A and to show that this algorithm in fact gives a(A). Many
new graphs are constructed (this time with determination of their groups
left to Appendix A), and special extensions of the lemmas of Chapter 3
(proved in Appendix B) are sometimes needed. New techniques are exhibited
carefully the first time, but as the number of special cases is extra-
ordinarily high, details are often omitted later.

Throughout this memoir, theorems are numbered consecutively within
each chapter (e.g, Theorem 7.1, Lemma 7.2, ...). If lemmas or corollaries
refer only to a particular theorem, an additional decimal point shows the
relationship (e.g., Lemma 6.4.2 is used in the proof of Theorem 6.4). In
general, notation follows Harary [18] for graphs and Hall [(17] for groups,
although Aut G rather than T(G) will be used for the automorphism group
of G, and circuit will be used for a graph cycle to distinguish it from
a cycle of a permutation group. An edge of a graph G with endpoints x
and y will be denoted [x,y]; the greatest integer contained in z will be
denoted [z]; and the greatest common divisor of two integers a and b will
be denoted (a,b).

Suppose ¢ is an automorphism of a graph with a given labeling. Then
¢ will act on the symbols of the labeling, and the notation x¢=y will mean
that x is replaced by y under the action of ¢®. Any convention leading to

right-hand notation would do as well; for a thorough discussion of this
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issue, giving all combinations which lead to left-hand or right-hand
notation, see Singmaster [35, pp.5-6].

Other notation is introduced as needed, and there is an index to that
notation which is special to this memoir immediately preceding the

references.
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CHAPTER 1

A HISTORICAL PERSPECTIVE

In 1938 Roberto Frucht [9] proved that any abstract (finite) group
is the automorphism group of some graph. For some time, attention then
centered on whether the graph having prescribed group could be required
to have other properties. Frucht [10] proved in 1949 that the graph'could
be required to be cubic (every vertex of degree 3). 1In 1957 Sabidussi
[33] was able to show that there were infinitely many non-homeomorphic
possibilities for the graph, all of them connected and fixed-point free,
and having either chromatic number (>2) or regularity (>3) arbitrarily
chosen. 1Izbicki [21] was able to show that both chromatic number and
degree of regularity can be chosen arbitrarily at the same time.

But eventually a more natural question arose. How small a graph could
be chosen? How few vertices (edges) were possible in a graph with group G?
Let o (G) be the minimum number of vertices possible; let e(G,n) be the
minimum number of edges possible in such a graph with n vertices. Clearly
a(Sn)=n, since the complete graph K has Aut G=s . Babai [3] proved in
1974 that a(G) < 2|G| for |G| > 6. Since a(G)=2|G| for G cyclic of prime
order p > 7, this is the most general theorem of this type possible.

In 1959 Sabidussi [34] claimed to have discovered a(G) for G cyclic.
He stated that a{2)=2, a(Zm)=3m if 3<m<5, a(Zm)=2m if m=p§z7. He then
claimed that the Fundamental Theorem of Abelian Groups would complete the
= ; alz, a;) if m=p,®l...p *n). But his

. n
i=1 i
results were true only for primes (the key error in his proof was the

cylic case ( by assuring a(Zm)

assertion that if mzpe, e>1l, ¢ € Aut G:Zm, then y, yv¢,..., y¢m_1 are all
distinct for y e V(G)).

Writing of this paper, Meriwether [26] said, "This line of reasoning
was taken up by Sabidussi in a short paper ... in which a number of
incorrect statements appeared. These must, however, be regarded more as

conjectures than theorems, since only the bare rudiments of proof were

Received by the editors March 1985



2 WILLIAM ARLINGHAUS

offered to substantiate them." Meriwether discovered both the error of
the prime power results (e.g., a(Z49)=56, not 98) and the error of the
Fundamental Theorem assertion (e.g., a(Z3)=9, a(ZS)=15, but u(le)=21<24).
He then made the same mistake of assuming the Fundamental Theorem would
extend the cyclic result to abelian groups. Even worse, Meriwether's
results remain unpublished (they are reproduced in a different format and
with entirely different proofs in this memoir).

Indeed, Meriwether's results were almost completely unknown until
1963, when Harary and Palmer [19] exhibited a graph with automorphism
group Z3, 9 vertices, and 15 edges, 3 fewer edges than Sabidussi had
found in 1959 (see Figure 4.3). In his review of that article (MR 33
(2563)), Sabidussi made known Meriwether's results. But the fact that
they were never published seems to have inhibited research in this area,
for even the few isolated results [15,16,23] that have been published
since then have been developed as a by-product of developing e(G,n).

In fact, even today knowledge of Meriwether's results is not great.
Gewirtz, Hill, and Quintas [13] know it, as does Czerniakiewicz [7], as
she attacked the same problem for color-groups. But, as recently as 1978,
Capobianco and Molluzzo [6, p. 105] reaffirmed Sabidussi's result as the
correct one, complete with the original "proof."

With the minimal vertex problem stalled, most recent work has been
aimed at determining e(G,n). Quintas was the first to make great strides
on this problem, solving it first in 1967 for asymmetric graphs [30] and
then in 1968 for symmetric groups [31]. In 1970 Frucht, Gewirtz, and
Quintas [12] found e(Z3,n) for all n>9. Here it is clear that knowledge
of u(Z3) was needed. But it is also clear that Meriwether's work has not
been exploited, for other cyclic groups have not been similarly investi-
gated. Dihedral groups have been investigated; Haggard [15] found e(D,n)
in 1973. Unfortunately, his results were incomplete, since a (D) was not
determined correctly for all dihedral groups until McCarthy did it in
1979 [22]. Haggard, McCarthy, and Wohlgemuth [16] had to determine o (H)
for H a hyperoctahedral group before they could determine e(H,n).

Actually, McCarthy and Quintas [23] have made considerable progress

on the general problem of calculating e(G,n). While e(G,n) appears to
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behave erratically for small n, McCarthy and Quintas have shown that
eventually e(G,n) is obtained from the union of a fixed graph M with
automorphism group G and a forest with identity group. They outline the
progress made thus far in [24].

Given the history of the subject, it seems clear that any attempt to
deal with the minimal vertex problem for all finite abelian groups must
present a great amount of detail. ©No general techniques appear in the
literature; in fact, there is not even a single proof that any single
graph is the minimal one with any given group. Seldom is it even prowved
that a given graph has a given group. For this reason, and because so
much of what has been done remains unpublished, this memoir tries to
present a wide variety of techniques in some detail, in the hope that not
only the results but also the techniques will be useful for research in
the future. (Historically, areas dealing with finite group theory have
benefited as much from presentation of new techniques as from presentation
of results, as illustrated in the works of Feit and Thompson [8],
Gorenstein and Harada [14], and Thompson [36].)

Looking toward that future, it can be seen that the minimality
problem could be considered for extensions of graphs, for graphs with
other graph-theoretical properties, or for special classes of graphs in
which analogues of Frucht's Theorem hold. Miller [27] considers minimum
simplicial complexes with given group, obtaining upper bounds in all
cases and exact results when the complex has dimension >4 and the group
has no factors Zpa with pu < 17. Tournaments, strongly regular graphs,
and Latin square graphs are three classes of graphs in which analogues of
Frucht's Theorem do hold. Since no automorphism of a tournament has
order 2 (Reid and Beineke [32]), every tournament has automorphism group
of odd order, and Moon [28] has shown that every group of odd order occurs.
More recently, Mendelsohn [25] has shown that every finite group is the
group of a strongly regular graph, and Phelps [29] has done the same for

Latin square graphs.



CHAPTER 2

F-DIAGRAMS OF GRAPHS

Graphs with automorphism groups of large order tend to have a high
degree of symmetry. They also often have enough points that drawing a
picture of the graph is difficult. 1In 1970 Frucht [11] developed a method
of describing such graphs more efficiently. Unfortunately, the article in
which he described it was not widely distributed, and only Bouwer and
Frucht [5] appear to have used his notation. Also, his notation was
basically designed only to describe edges joining sets of n points to
other sets of n points. There is some loss of clarity if edges from an
n-set to an m-set (where m|n) are described. Thus it appears that a
refinement of his notation would be useful without causing undue confusion
in reading the literature. The diagrams developed in this chapter to
represent graphs will be called F-diagrams. (The reader seeking motiva-
tion for this name should not find the search fruchtless.)

An F-diagram contains the following components:

1) An encircled number m represents m points (say al,...,am).
2) A parenthesized letter k next to such an encircled number m represents

the edges [ai, 1<i<m, addition mod m. Thus, for example, the

aj .kl

F-diagram of Figure 2.la represents the graph of Figure 2.1b.

FIGURE 2.1

3) An undirected line between 2 encircled numbers m and n (defining)
points a; (1<i<m) and bj (l<j<n) represents the edges [ai, bj]'

where i=j (mod (m,n)).

4) A directed arrow —————E———%> from encircled number m to encircled

number n represents edges [ai, b ], where i=j (mod (m,n)).

j+k
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a) If more than one set of lines is needed between points a; and bj,
several integers (positive, negative, or zero) may be written over
the arrow.

b) The undirected line may be replaced by placing a zero over a
directed arrow.

c) A series of lines may even be indicated by writing a symbol such
as k (mod d) over an arrow.

Example 1 The Petersen graph (Figure 2.2a) may be represented by the

F-diagram of Figure 2.2b.

02y

a b
FIGURE 2.2

Example 2 Sabidussi [34, p. 126] exhibited a graph defined as follows as
a candidate for the minimal graph G with automorphism group 249.
v(c) = {1,...,49; 1',...,49"'}
E(G) = {[x, x+1] | 1<x<49, addition mod 49}
ullx, y'1 | 1<x,y<49,y-x=-1,0, or 2 (mod 49)}
This qraph may be represented by the F-diagram of Figure 2.3a; or, if only
the non-negative numbers are allowed over an arrow, it may be equivalently

represented by the F-diagram of Figure 2.3b.

b

FIGURE 2.3
Example 3 A graph very similar to Sabidussi's actually provides a minimal

graph with automorphism group Z49(as exhibited in Chapter 4). Its
F-diagram is exhibited in Figure 2.4. Incidentally, Frucht's original

notation (which has not been used in the literature) would have required
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reversing the arrow in this situation.

=1; @; 2

49 (1)

FIGURE 2.4

Example 4 Consider the three F-diagrams below.

FIGURE 2.5

The first represents a hexagon, the second two triangles, and the third
three lines.
From the above examples, it is easy to see the advantages of using

F-diagrams as a shorthand method of describing highly symmetric graphs.



CHAPTER 3

COMMUTATIVITY LEMMAS

In future chapters it will be necessary to prove that certain graphs
with given (abelian) automorphism group have a minimal number of vertices.
The method used will be to establish that smaller graphs assumed to have
the required automorphism group in fact have non-abelian group. Thus it
will be helpful to provide some conditions under which an automorphism
group can be shown to be non-abelian.

Notation:

1) If a is a cycle in a permutation, the orbit consisting of those
letters moved by o will be denoted Oa' Similarly, the set of letters
moved by a permutation g will be denoted Og

2) Let a=(l...n) be a cycle.

a) %x is the mapping (1 n) (2 n-1)... defined by i¢a=n+l—i, l1<ig<n,
xdb=x otherwise.
b) fa is the mapping (1 n-1) (2 n-2)... defined by ifa=n—i, l<4di ¢ n,

xfa=x otherwise.
Both mappings are of course dependent on the order in which « is written.
Note first that if [x,yle E(G) and ¢ € Aut G, then [x¢,yp] € E(G).
This suggests that the presence of and edge between vertices which are in
different cycles of an element of Aut G forces the presence of many
additional edges. 1Indeed, the fewer divisors the orders of the cycles

share, the more adjacencies are forced.

Lemma 3.1 Suppose geAut G contains an m-cycle o and an n-cycle B, where

(m,n)=d. Then [x,y]€E(G) for xeoa, yeO
id
’

8 if and only if [x',y'leE(G)

whenever x'=xa y'=yBJd (i, j arbitrary integers).

Proof: Suppose xeoa, chB. Choose r, s such that rm+sn=d. Then

[x,y]gjrm:[xajrm,ysjd—]sn]=[x,yB]d]. Similarly [x,yBJd]glsn=[xuld,ySJd].

Thus [x,y]eE(G) if and only if [x',y']eE(G).

Corollary 3.1.1 If (m,n)=1, either every letter of o is adjacent to every

letter of B or no letter of a is adjacent to a letter of B8.
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This last corollary suggests that cycles of relatively prime length
have virtually no effect on each other. This leads to an attempt to
produce conditions under which additional cycles of length not relatively
prime to some specific number may be forced to exist (if Aut G is to be
abelian). The basic idea leading to these results is that a given circuit
of length n>2 may be reflected as well as rotated. Since reflection and
rotation generally do not commute with each other, this situation can not
exist in an abelian group. Corollary 3.1.1 then forces the presence of

an additional number of points m, (m,n) # 1.

Lemma 3.2 Let G be a graph. Suppose geAut G contains a single cycle o
such that one of the following conditions holds.

a) a is of length n>2, and all other cycles of Aut G have length
relatively prime to n or are transpositions (let Cpre-=1Cy be the
transpositions).

b) a is of length 2n>4, and all other cycles of Aut G have length
relatively prime to n or are transpositions.

c) a is of length 3" (n > 1), Aut G contains another cycle B8 of length
3m (m > 1, (m,3)=1), and all other cycles of Aut G have length relatively
prime to 3m or are transpositions.

d) o is of length 3" (n > 1), Aut G contains another cycle B of length
ém (m > 1, (m,6)=1), Aut G contains (possibly) cycles Yy of length Zki

(ki > 1, (ki,3m)=l, 1 <i < t), and all other cycles of Aut G have length

relatively prime to 6m and to each ki'

e) a is of length 3n (n > 1), Aut G contains another cycle B of length
3m (m > 1, (m,3n)=1), and all other cycles of Aut G have length relatively
prime to 3mn or are transpositions.

f) o is of length 3n (n > 1), Aut G contains another cycle B of length
ém (m > 1, (m,6n)=1), Aut G contains (possibly) cycles of length Zki'

(ki > 1, (ki,3mn)=l, 1 < i < t), and all other cycles of Aut G have length
relatively prime to 6émn and to each ki'

g) o is of length 5% (n > 1), Aut G contains a cycle of length 5m
(m > 1, (m,5)=1), and all other cycles of Aut G have length relatively
prime to 5m or are transpositions.

h) o is of length 5" (n > 1), Aut G contains a lOm-cycle (m > 1,



