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Preface

This book is concerned with various topics that center around equivariant
holomorphic maps of Hermitian symmetric domains and is intended for spe-
cialists in number theory and algebraic geometry. In particular, it contains
a comprehensive exposition of mixed automorphic forms that has never ap-
peared in book form.

The period map w : H — H of an elliptic surface FE over a Riemann surface
X is a holomorphic map of the Poincaré upper half plane H into itself that is
equivariant with respect to the monodromy representation x : I' — SL(2, R)
of the discrete subgroup I' € SL(2,R) determined by X. If w is the identity
map and y is the inclusion map, then holomorphic 2-forms on £ can be
considered as an automorphic form for I" of weight three. In general. however,
such holomorphic forms are mixed automorphic forms of type (2.1) that are
defined by using the product of the usual weight two automorphy factor and
a weight one automorphy factor involving w and y. Given a positive integer
m, the elliptic variety E"' can be constructed by essentially taking the fiber
product of m copies of E over X . and holomorphic (m+ 1)-forms on E™ may
be regarded as mixed automorphic forms of type (2, m). The generic fiber of
E™ is the product of m elliptic curves and is therefore an abelian variety, or
a complex torus. Thus the elliptic variety E™ is a complex torus bundle over
the Riemann surface X.

An equivariant holomorphic map 7 : D — D’ of more general Hermitian
symmetric domains D and D’ can be used to define mixed automorphic forms
on D. When D’ is a Siegel upper half space, the map 7 determines a complex
torus bundle over a locally symmetric space I'\D for some discrete subgroup
I' of the semisimple Lie group G associated to D. Such torus bundles are
often families of polarized abelian varieties, and they are closely related to
various topics in number theory and algebraic geometry. Holomorphic forms
of the highest degree on such a torus bundle can be identified with mixed
automorphic forms on D of certain type. Mixed automorphic forms can also
be used to construct an embedding of the same torus bundle into a complex
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projective space. On the other hand, sections of a certain line bundle over this
torus bundle can be regarded as Jacobi forms on the Hermitian symmetric
domain D.

The main goal of this book is to explore connections among complex torus
bundles, mixed automorphic forms, and Jacobi forms of the type described
above. Both number-theoretic and algebro-geometric aspects of such connec-
tions and related topics are discussed.

This work was supported in part by a 2002-2003 Professional Develop-
ment Assigninent award from the University of Northern Iowa.

Cedar Falls, Towa, April 5, 2004 Min Ho Lee
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Introduction

Let E be an elliptic surface in the sense of Kodaira [52]. Thus E is a compact
smooth surface over C, and it is the total space of an elliptic fibration 7 :
E — X over a compact Riemann surface X whose generic fiber is an elliptic
curve. Let I' € SL(2,R) be a Fuchsian group of the first kind acting on the
Poincaré upper half plane ‘H by linear fractional transformations such that
the base space for the fibration 7 is given by X = I'\H*, where H* is the
union of H and the set of cusps for I'. Given z € Xy = I'\H. let @ be a
holomorphic 1-form on the fiber E. = 77 !(2), and choose an ordered basis
{71(2),72(2)} for H,(E.,Z) that depends on the parameter z in a continuous
manner. Consider the periods w; and wy of F given by

wl(:):/ P, u}-z(z):/ P.
Jy1(2) v2(2)

Then the imaginary part of the quotient w;(z)/w2(z) is nonzero for each =.
and therefore we may assume that w(z)/wa(z) € H. In fact, wi/we is a
many-valued holomorphic function on Xy, and the period map w : H — 'H
is obtained by lifting the map w;/ws : X9 — H from Xy to its universal
covering space H. If " is identified with the fundamental group of X. the
natural connection on £ determines the monodromy representation y : I” —
SL(2,R) of I', and the period map is equivariant with respect to y, that is,
it satisfies
w(vz) = x(7w(z)

for all v € I" and z € 'H. Given nonnegative integers k& and ¢, we consider a
holomorphc function f on H satisfying

f(vz) = (cz + d)F (cw(z) + dy) f(2) (0.1)

for all z € Hand v = (2}) € I" with x(y) = ("‘ "‘) € SL(2,R). Such a

cx dy
function becomes a mixed automorphic or cusp form for I" of type (k,?) if in
addition it satisfies an appropriate cusp condition. It was Hunt and Meyer [43]
who observed that a holomorphic form of degree two on the elliptic surface
E can be interpreted as a mixed cusp form for I of type (2, 1) associated to
w and y. If x is the inclusion map of I" into SL(2,R) and if w is the identity
map on H, then E is called an elliptic modular surface. The observation of
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Hunt and Meyer [43] in fact generalizes the result of Shioda [115] who showed
that a holomorphic 2-form on an elliptic modular surface is a cusp form of
weight three. Given a })O'slth(‘ integer m, the elliptic variety E"" associated
to the elliptic fibration 7 : ¥ — X can be obtained by essentially taking
the fiber product of m copies of E over X (see Section 2.2 for details), and
holomorphic (m + 1)-forms on E™ provide examples of mixed automorphic
forms of higher weights (cf. [18, 68]). Note that the generic fiber of E™ i

an abelian variety, and therefore a complex torus. obtained by the product
of elliptic curves. Thus the elliptic variety E™ can be regarded as a family
of abelian varieties parametrized by the Riemann surface X or as a complex
torus bundle over X.

Another source of examples of mixed automorphic forms comes from the
theory of linear ordinary differential equations on a Riemann surface (see
Section 1.4). Let I' C SL(2,R) be a Fuchsian group of the first kind as
before. Then the corresponding compact Riemann surface X = I'\'H™ can
be regarded as a smooth algebraic curve over C. We consider a second order
linear differential equation A% f = 0 with

2
/12 = % + Px ()
where Py (r) and Qx(r) are rational functions on X. Let w; and w»y be
linearly independent solutions of A% f = 0. and for each positive integer m
let S™(A%) be the linear ordinary differential operator of order m + 1 such
that the m + 1 functions

T+ Qx (). (0.2)
ax

m m—1 m—1 m

wit W' W, wiwy T Wy
are linearly independent solutions of the corresponding homogeneous equa-
tion S"(A%)f = 0. By pulling back the operator in (0.2) via the natural
projection map H* — X = I'\H* we obtain a differential operator

12 ! ,
L (2)— +Q(=) (0.3)

/1 2
dz

such that P(z) and Q(z) are meromorphic functions on H*. Let w(z) and

wo(z) for = € H be the two linearly independent solutions of A%f = 0 corre-
sp(mdmg to w; and wy above. Then the monodromy representation for the
differential equation A%f = 0 is the group homomorphism y : I' — GL(2.C)
which can be defined as follows. Given elements v € I" and z € ‘H. we assume
that the elements w;(vz) and w2(~yz) can be written in the form

wi(72) = aywi(z) + bywa(z),  wa(72) = ywi(2) + dywa(z).

Then the image of v € I' under the monodromy representation y is given by

x(7) = ("‘ [;‘> € GL(2,C). (0.4)

Cx Ox
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We assume that x(I') C SL(2,R) and that
w(z) = wi(z)/wa(z) € H
for all z € H. Then the resulting map w : H — H satisfies

ayw(z) +by

o (2) + dy = X(7)w(z)

w(hz) =
for all z € H and v € I'. Thus the map w is equivariant with respect to x,
and we may consider the associated meromorphic mixed automorphic or cusp
forms as meromorphic functions satisfying the transformation formula in (0.1)
and a certain cusp condition. If S (A?) is the differential operator acting on
the functions on ‘H obtained by pulling back S™ (Ai) via the projection map
H* — X. then the solutions of the equation S"(A?)f = 0 are of the form

m

> ciwn(2)" " wa(2)’

=0

for some constants cg, . ... ¢m. Let ¥ be a meromorphic function on H* cor-
responding to an element »x in K(X). and let f¥ be a solution of the non-
homogeneous equation

S™(A%) f = v.

If k is a nonnegative integer k, then it can be shown the function

dm+1 < fu:(:) >
:)m

dw(z)m 1\ wa(
for = € H is independent of the choice of the solution f¥ and is a mixed auto-
morphic form of type (2k.m —2k+2) associated to I', w and the monodromy
representation .
If fis a cusp form of weight w for a Fuchsian group I' € SL(2,R), the
periods of f are given by the integrals

/0' TR

with 0 < k < w — 2, and it is well-known that such periods of cusp forms
are closely related to the values at the integer points in the critical strip
of the Hecke L-series. In [22] Eichler discovered certain relations among the
periods of cusp forms, which were extended later by Shimura [112]; these rela-
tions are called Eichler-Shimura relations. More explicit connections between
the Eichler-Shimura relations and the Fourier coefficients of cusp forms were
found by Manin [91]. If f is a mixed cusp form of type (2,m) associated to
I" and an equivariant pair (w, y), then the periods of f can be defined by the
integrals

452’(:) =uw'(2)¥
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P00
/ f(2)w(z)tdz
J 0

with 0 < k& < m. The interpretation of mixed automorphic forms as holo-
morphic forms on an elliptic variety described earlier can be used to obtain a
relation among such periods, which may be regarded as the Eichler-Shimura
relation for mixed cusp forms (see Section 2.4).

Connections between the cohomology of a discrete subgroup I" of SL(2,R)
and automorphic forms for I were made by Eichler [22] and Shimura [112]
decades ago. Indeed, they established an isomorphism between the space
of cusp forms of weight m + 2 for I' and the parabolic cohomology space
of I' with coefficients in the space of homogeneous polynomials of degree
m in two variables over R. To be more precise, let Sym™(C?) denote the
m-th symmetric power of C?, and let H}(I", Sym™(C?)) be the associated
parabolic cohomology of I'. where the I'-module structure of Sym™ (C?) is
induced by the standard representation of I' € SL(2,R) on C?. Then the
Eichler-Shimura isomorphism can be written in the form

HL(L.Sym™ (C?)) = S,qo(I) & Sy o).

where Sy, 12(1") is the space of cusp forms of weight m+2 for I" (cf. [22, 112]).
In particular, there is a canonical embedding of the space of cusp forms into
the parabolic cohomology space. The Eichler-Shimura isomorphism can also
be viewed as a Hodge structure on the parabolic cohomology (see e.g. [6]).
If (w.x) is an equivariant pair considered earlier, we may consider another
action of I on Sym™ (C?) which is determined by the composition of the ho-
momorphism y : I' — SL(2,R) with the standard representation of SL(2,R)
in Sym” (C?). If we denote the resulting I'-module by Sym’\”((CQ). the asso-
ciated parabolic cohomology H (I, Sym;’,’((C‘z)) is linked to mixed automor-
phic forms for I associated to the equivariant pair (w, y). Indeed, the space of
certain mixed cusp forms can be embedded into such parabolic cohomology
space, and a Hodge structure on H (1, Symy’ (C?)) can be determined by an
isomorphism of the form

H}’(F S.Vn],\,'l((cz)) = S‘Z.m(F~UJ~ \) eWob ‘52<rr1(11~w~ \) (05)

where W is a certain subspace of H};(F. Sym’,(”(C2 )) and Sy, (I, w, Y) is the
space of mixed cusp forms of type (2,m) associated to I', w and x (see
Chapter 3). The space W in (0.5) is not trivial in general as can be seen
in [20, Section 3], where mixed cusp forms of type (0,3) were studied in
connection with elliptic surfaces. The isomorphism in (0.5) may be regarded
as a generalized Eichler-Shimura isomorphism.

The correspondence between holomorphic forms of the highest degree on
an elliptic variety and mixed automorphic forms of one variable described
above can be extended to the case of several variables by introducing mixed
Hilbert and mixed Siegel modular forms. For the Hilbert modular case we
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consider a totally real number field £ of degree n over Q, so that SL(2, F)
can be embedded in SL(2,R)™. Given a subgroup I" of SL(2, F') whose em-
bedded image in SL(2,R)" is a discrete subgroup, we can consider the asso-
ciated Hilbert modular variety I"\H" obtained by the quotient of the n-fold
product H"™ of the Poincaré upper half plane ‘H by the action of I" given
by linear fractional transformations. If w : H" — H" is a holomorphic map
equivariant with respect to a homomorphism y : I' — SL(2. F), then the
equivariant pair (w,x) can be used to define mixed Hilbert modular forms,
which can be regarded as mixed automorphic forms of n variables. On the
other hand, the same equivariant pair also determines a family of abelian
varieties parametrized by I'\'H". Then holomorphic forms of the highest de-
gree on such a family correspond to mixed Hilbert modular forms of certain
type (see Section 4.2). Another type of mixed automorphic forms of several
variables can be obtained by generalizing Siegel modular forms (see Section
4.3). Let 'H,,, be the Siegel upper half space of degree m on which the sym-
plectic group Sp(m,R) acts as usual, and let I, be a discrete subgroup of
Sp(m,R). If 7 : H,, — H,,» is a holomorphic map of ‘H,, into another Siegel
upper half space H,,» that is equivariant with respect to a homomorphisin
p: Iy — Sp(m/,R), then the equivariant pair (7, p) can be used to define
mixed Siegel modular forms. The same pair can also be used to construct a
family of abelian varieties parametrized by the Siegel modular variety I'\'H,,,
such that holomorphic forms of the highest degree on the family correspond
to mixed Siegel modular forms (see Section 4.3).

A further generalization of mixed automorphic forms can be considered by
using holomorphic functions on more general Hermitian symmetric domains
which include the Poincaré upper half plane or Siegel upper half spaces. Let
G and G’ be semisimple Lie groups of Hermitian type, so that the associated
Riemannian symmetric spaces D and D', respectively, are Hermitian sym-
metric domains. We consider a holomorphic map 7 : D — D', and assume
that it is equivariant with respect to a homomorphism p : G — G’. Let I’
be a discrete subgroup of G. Note that, unlike in the earlier cases, we are
assuming that 7 is equivariant with respect to a homomorphism p defined on
the group G itself rather than on the subgroup I'. This provides us with more
flexibility in studying associated mixed automorphic forms. Various aspects
of such equivariant holomorphic maps were studied extensively by Satake
in [108]. Given complex vector spaces V and V' and automorphy factors
J:GxD—GL(V)and J : G’ x D' — GL(V'). a mixed automorphic form
on D for I' is a holomorphic function f : D — V & V' satisfying

f(vz) =J(v,2) @ J(p(v), 7(2)) f(2)

for all z € Dand v € I' (see Section 5.1). Another advantage of considering an
equivariant pair (7, p) with p defined on G instead of I' is that it allows us to
introduce a representation-theoretic description of mixed automorphic forms.
Such interpretation includes not only the holomorphic mixed automorphic
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forms described above but also nonholomorphic ones. Given a semisimple
Lie group G, a maximal compact subgroup K, and a discrete subgroup I"
of finite covolume, automorphic forms on G can be described as follows. Let
Z(g) be the center of the universal enveloping algebra of the complexification
ge of the Lie algebra g of G, and let V be a finite-dimensional complex vector
space. A slowly increasing analytic function f : G — V is an automorphic
form for I' if it is left I'-invariant, right K-finite, and Z(g)-finite. Let G’
be another semisimple Lie group with the corresponding objects K’, I'" and
V', and let ¢ : G — G’ be a homomorphism such that ¢(K) C K’ and
@(I') € I'". Then the associated mixed automorphic forms may be described
as linear combinations of functions of the form f @ (f o) : G — V @ V',
where f : G — V is an automorphic form for I and f' : G’ — V' is an
automorphic form for I’ (see Section 5.2.

The equivariant pair (7, p) considered in the previous paragraph also de-
termines a family of abelian varieties parametrized by a locally symmetric
space if G’ is a symplectic group. Let H,, be the Siegel upper half space of
degree n on which the symplectic group Sp(n,R) acts as usual. Then the
semidirect product Sp(n,R) x R?" operates on the space H,, x C" by

(( ABY (u, y)) (Z,0) = ((AZ+B)(CZ + D) ' (C+pZ +v)(CZ+ D))

for (A B) e Sp(n.R). (n.v) € R* and (Z,¢) € H,, x C", where elements of
R2" and C" are considered as row vectors. We consider the discrete subgroup
I'y = Sp(n.Z) of Sp(n,R), and set

Xo=Io\H,, Yy=1Iyx ZQ"\Hn x C".

Then the map 7 : Yy — Xy induced by the natural projection map H,, x
C" — H,, has the structure of a fiber bundle over the Siegel modular space X
whose fibers are complex tori of dimension n. In fact, each fiber of this bundle
has the structure of a principally polarized abelian variety, and therefore the
Siegel modular variety Xy = I)\'H,, can be regarded as the parameter space
of the family of principally polarized abelian varieties (cf. [63]). In order to
consider a more general family of abelian varieties, we need to consider an
equivariant holomorphic map of a Hermitian symietric domain into a Siegel
upper half space. Let G be a semisimple Lie group of Hermitian type, and let
D be the associated Hermitian symmetric domain, which can be identified
with the quotient G/K of G by a maximal compact subgroup K. We assume
that there are a homomorphism p : G — Sp(n.R) of Lie groups and a
holomorphic map 7 : D — H,, that is equivariant with respect to p. If I" is a
torsion-free discrete subgroup of G with p(I") C Iy and if we set X = I'\D,
then 7 induces a map 7x : X — Xy of the locally symmetric space X into the
Siegel modular variety Xg. By pulling the bundle my : Yy — X back via 7x
we obtain a fiber bundle 7 : Y — X over X whose fibers are n-dimensional
complex tori. As in the case of 7, each fiber is a polarized abelian variety, so
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that the total space Y of the bundle may be regarded as a family of abelian
varieties parametrized by the locally symmetric space X. Such a family Y is
known as a Kuga fiber variety, and various arithmetic and geometric aspects
of Kuga fiber varieties have been studied in numerous papers over the years
(see e.g. [1, 2, 31, 61, 62, 69, 74, 84, 96, 108, 113]). A Kuga fiber variety is
also an example of a mixed Shimura variety in more modern language (cf.
[94]). Holomorphic forms of the highest degree on the Kuga fiber variety Y
can be identified with mixed automorphic forms on the symmetric domain D
(see Section 6.3).

Equivariant holomorphic maps of symmetric domains and Kuga fiber va-
rieties are also closely linked to Jacobi forms of several variables. Jacobi forms
on the Poincaré upper half plane H, or on SL(2,R), share properties in com-
mon with both elliptic functions and modular forms in one variable, and
they were systematically developed by Eichler and Zagier in [23]. They are
functions defined on the space H x C which satisfy certain transformation
formulas with respect to the action of a discrete subgroup I" of SL(2,R), and
important examples of Jacobi forms include theta functions and Fourier coef-
ficients of Siegel modular forms. Numerous papers have been devoted to the
study of such Jacobi forms in connection with various topics in number theory
(see e.g. [7, 9, 54, 116]). In the mean time, Jacobi forms of several variables
have been studied mostly for symplectic groups of the form Sp(m,R), which
are defined on the product of a Siegel upper half space and a complex vec-
tor space. Such Jacobi forms and their relations with Siegel modular forms
and theta functions have also been studied extensively over the years (cf.
(25, 49, 50, 59, 123, 124]). Jacobi forms for more general semisimple Lie groups
were in fact considered more than three decades ago by Piatetskii-Shapiro
in [102, Chapter 4]. Such Jacobi forms occur as coefficients of Fourier-Jacobi
series of automorphic forms on symmetric domains. Since then, there have
not been many investigations about such Jacobi forms. In recent years, how-
ever, a number of papers which deal with Jacobi forms for orthogonal groups
have appeared, and one notable such paper was written by Borcherds [12]
(see also [11, 55]). Borcherds gave a highly interesting construction of Jacobi
forms and modular forms for an orthogonal group of the form O(n+2,2) and
investigated their connection with generalized Kac-Moody algebras. Such a
Jacobi form appears as a denominator function for an affine Lie algebra and
can be written as an infinite product. The denominator function for the fake
monster Lie algebra on the other hand is a modular form for an orthogonal
group, which can also be written as an infinite product. Thus many new ex-
amples of generalized Kac-Moody algebras may be constructed from modular
or Jacobi forms for O(n+2,2), and conversely examples of modular or Jacobi
forms may be obtained from generalized Kac-Moody algebras. In this book
we consider Jacobi forms associated to an equivariant holomorphic map of
symmetric domains of the type that is used in the construction of a Kuga
fiber variety (see Chapter 7). Such Jacobi forms can be used to construct an
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embedding of a Kuga fiber variety into a complex projective space. They can
also be identified with sections of a certain line bundle on the corresponding
Kuga fiber variety. Similar identifications have been studied by Kramer and
Runge for SL(2,R) and Sp(n,R) (see [57, 58, 105]).

The construction of Kuga fiber varieties can be extended to the one of
more general complex torus bundles by using certain cocycles of discrete
groups. Let (7,p) be the equivariant pair that was used above for the con-
struction of a Kuga fiber variety. Thus 7 : D — H,, is a holomorphic map
that is equivariant with respect to the homomorphism p : G — Sp(n,R) of
Lie groups. Let L be a lattice in R?", and let I" be a torsion-free discrete
subgroup of G such that ¢ - p(y) € L for all ¢ € L and v € I', where we
regarded elements of L as row vectors. If L denotes the lattice Z*" in Z>",
the multiplication operation for the semidirect product I' x L is given by

(71, €1) - (72, €2) = (M2, ap(y2) + £2) (0.6)
for all 1,72 € I" and ¢1,¢5 € L, and I' x L acts on D x C" by
(. (1,0)) - (2,0) = (32, (w0 + p7(2) + )(Cpr(2) + D)7, (0.7)

for all (z,w) € D x C", (p,v) € L C R" x R” and v € I' with p(y) =

A, B, . . ; S £

(("I D ) € Sp(n,R). Then the associated Kuga fiber variety is given by the
(4 4 -

quotient

Y=IxL\DxC",

which is a fiber bundle over the locally symmetric space X = I'\D. We now
consider a 2-cocycle ¢ : I' x I' — L define the generalized semidirect product
I X, L by replacing the multiplication operation (0.6) with

(71, 41) - (92, 82) = (7172, Lip(y2) + Co + P (71.72))-

We denote by A(D, C™) the space of C"-valued holomorphic functions on D,
and let € be a 1-cochain for the cohomology of I" with coefficients in A(D, C")
satisfying

(1, 72)(2) = ¥, 72) (T(l:)>

for all z € D and v,72 € I', where ¢ is the coboundary operator on 1-
cochains. Then an action of I" x,, L on D x C" can be defined by replacing
(0.7) with

(s (11, 0)) - (2, w) = (2, (w + p7(2) + v+ EM()NC,pr(2) + D,) 7).

If the quotient of D x C™ by I" x,, L with respect to this action is denoted by
Yy, the map 7 : Y, ¢ — X = I'\D induced by the natural projection D x
C" — D is a torus bundle over X which may be called a twisted torus bundle
(see Chapter 8). As in the case of Kuga fiber varieties, holomorphic forms
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of the highest degree on Y, ¢ can also be identified with mixed automorphic
forms for I" of certain type.

This book is organized as follows. In Chapter 1 we discuss basic proper-
ties of mixed automorphic and cusp forms of one variable including the con-
struction of Eisenstein and Poincaré series. We also study some cusp forms
associated to mixed cusp forms and describe mixed automorphic forms asso-
ciated to a certain class of linear ordinary differential equations. Geometric
aspects of mixed automorphic forms of one variable are presented in Chap-
ter 2. We construct elliptic varieties and interpret holomorphic forms of the
highest degree on such a variety as mixed automorphic forms. Discussions
of modular symbols and Eichler-Shimura relations for mixed automorphic
forms are also included. In Chapter 3 we investigate connections between
parabolic cohomology and mixed automorphic forms and discuss a gener-
alization of the Eichler-Shimura isomorphism. In order to consider mixed
automorphic forms of several variables we introduce mixed Hilbert modular
forms and mixed Siegel modular forms in Chapter 4 and show that certain
types of such forms occur as holomorphic forms on certain families of abelian
varieties parametrized by Hilbert or Siegel modular varieties. In Chapter 5
we describe mixed automorphic forms on Hermitian symmetric domains as-
sociated to equivariant holomorphic maps of symmetric domains. We then
introduce a representation-theoretic description of mixed automorphic forms
on semisimple Lie groups and real reductive groups. We also construct the
associated Poincaré and Eisenstein series as well as Whitaker vectors. In
Chapter 6 we describe Kuga fiber varieties associated to an equivariant holo-
morphic map of a symmetric domain into a Siegel upper half space and show
that holomorphic forms of the highest degree on a Kuga fiber variety can
be identified with mixed automorphic forms on a symmetric domain. Ja-
cobi forms on symmetric domains and their relations with bundles over Kuga
fiber varieties are discussed in Chapter 7. In Chapter 8 we are concerned with
complex torus bundles over a locally symmetric space which generalize Kuga
fiber varieties. Such torus bundles are constructed by using certain 2-cocycles
and 1-cochains of a discrete group. We discuss their connection with mixed
automorphic forms and determine certain cohomology of such a bundle.



