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Introduction

The theory of functions of real variables deals with various
extensions, in the sense of enlargement*, of the classes of con-
tinuous and continuously differentiable functions of one or several
variables. Such enlargaments (and contractions) are needed to
develop an adequate theory of those operators which occur in various
problems of analysis** and for which the spaces of continuous or
continuously differentiable functions do not form a natural domain,
The prime examples of such operators are those which are formally
symmetric or normal with respect to the ordinary scalsr product for
functions; e.g. the Fourier transformation and self adjoint differ-
ential operators,

The simplest and most generally useful enlargements (or con-
tractions) of the space of continuous functions are: the Ll’ L2,
La: and Lp spaces; the spaces. of functions whose derivatives up to
a certain order belong to these spaces; and their duals, In these
notes we shall define these spaces by the most direct method: By

completion with respect to various metrics and by aualitz. of

course when introduced in this fashion the elements of these spaces
are merely abstract entities - ideal elements, functions in name
only. Nevertheless these abstract entities are easy enough to
manipulate; e.g. functions can be formed of them, they can be diff-
erentiated and intepreted, etc. The view we wish to emphasize is
that they behave sufficiently like functions to serve the purpose
for which they were introduced. There are many examples illustra-
ting the validity of this viewy I regret that there' was not enough
time to include some of these in the lectures on which these notes
are based.

ol There are extensions of the function concept in different senses.
To wit, one can take for the domain of the argument of the function
something more general then Euclidean space, such as a topological
space, metric space, or a differentiable manifold. Or in another
sense, one can take for the range of the functional values something
more general than the r eal numbers, such as Euclidean, or some more
general, space.

11 problems of analysis involve in some form or another, opera-
tors. If e.g. the problem is to find a function with some pre-
scribed properties, these properties are expressed as an equation
involving an operator,
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The concrete characterizatiocn ol some of these classes of
abstract functions as geauine functions (modulo the class of tri-
vial functions) is presented in the last chapter. Ior the working
analyst the significance of having such concrete realizations is
twofold: First, one learns useful details about the structure of
the generalized function-spaces; an example or such a useful result
is Lebesgue's theorem about decomposing a measure into its singular
and absolutely continuous part with respect to another. The second
use is well illustrated by Lebesgus!s Dominated Convergence Theoren;
it is the most powerful and most olten used criterion for showing
the Lo convergence of a given sequence of functions,

In thess notes we vresent the Lebesgiue theory as giving a

concret: realizaticn of the abstractiiy delfined L, spacej much of

the technigue is borrowed from the Daniell approich. We have omit-
ted & great many of the standard topics, sucih as the Baire classi-
fication of functions. Measure theory is xex»t to a minimum; e.g.
product measure is not defined and Iubini's theorem is confined to
& handwave.

The setting is a locally compact metric space; there is no
special discussion of functions of a single variable, except in
illustrations of results derived in a more general context,

Having stated our point of view, we give now a brief descrip-
tion of the content of these notes and indicate what additional
material might have been included. First of all, the first three
standard subiects of a course on real variables sre not covered:
the number system, the theory of sets zud <..z rudiments of point

»

set topology. My own lectures on these subjecos were based on the

B

by J. Berhowitz, For in-

(@3
o

outline notes (NYU, '56 - !57) prepare
troducing the real numbers I like to em .iasize Cantor's me thod
(equivalence classes of Cauchy sequences) since it serves as a
model for the complietion of metric spaces. The conclusion to be
crawn is that the various functionspaces, constructed by completion,
are just as "real" as the real numbers; in fact, this 1s the most
important lesson .. be learned from a discussion of the number
s

systcn at this level,

S

" A serious discussion of the implications of the axiom of choise
is not advisable.



- vii

In discussing point set topology one has the choice of stick-
ing to metric spaces or taking into asccount more general topologi-
cal spaces., It is desirable to acquaint students with both concepts
as early as possible, Similarly, it is desirable to introduce
~briefly at this point the concept of a differentiable manifold.
After all, it is important to know that not only continuous func-
tlons but also differentiable ones have meaningful generalizations
to spabes more general than Zuclidean.

In the first chapter we describe how to construct continuous
functions with useful properties, i.e. the property of having the
value O on one clozed set, 1 on another, and others. This would be
the place to present the simplest metrization theorem and the
Tietze extension theorem., The Yhitney extension theorem should at
least be mentioned,

The bulk of the chapter contains a brief review of the concept
of the Riemann intégral, a discussion of convoluticn, the
Weierstrass approximation theorem, and its generalization by Stone,

Chapter II is a brief introduction to functional analysis,
l.e. the definition and clementary proc..rties of linear spaces,
normed linear spaces and continuous linear vransformations of
normed linear svaces. The principle of uniform boundedness is
stated withouf'proof; The rest of the chapter is devoted to the
abstract Lp Spaces; 1t 1s shown how to define integration and con=-
velution, and a functional calculus is develoved, In particular it
~1s shown that the motion of positivity is meaningful, and the prin-
ciple of monotone convergence is stated and proved. There is a
brief discussion of the Lp snace of functions whose values 1lie in a
normed linear space.

In Chapter III the dual of a normed _.near space 1s defined,
The Hahn-Banach theorem is stated but not proved; it is shown that
if L and Lg are dual, 1/p + 1/g = 1. »n axiomatic characterization

of Hilbert space is given and the usual geometrical notions are

¢

3

developed, Complete orthonormal sets are introduced and the con-
vergence of Fourier series is proved, The Riesz Frechet represen-

tation theorem for linear functionals is proved and its relation to

]

% ‘ q .
The weak compactness of the unit sphere ought to »¢ mentioned
here but it isnt't,
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the projection theorem is exnleined. The well known application
of the projection theorem to deriving a criterion for completeness
is given., Next the space Hm of functions with square integrable
partial derivatives up to order m is defined by completion. ' The
fundamental theorem of calculus is proved and the validity of the
classical formula for integration by rarts is noted. Sobolev's
theorem (for m large enough H consists of continucus functions) is
stated and a weak form of it is provedj Rellich's compactness cri-
terion is stated, Next the H-m spacés are introduced as the duals
of' the Hm spaces with resvect to the.L2 scalar product, and their
relation to the space of distributions is discussed, The notion of
the support of a distribution is defined.

Chapter IV presents the Lebesgue theory. The basic notion is
the integral,i.e a positive lineer functional 1 defined over the -
space Co of a1l continuous functions with compact support over a
locally compact*' metric space. The volume of an open set G 1is
defined as the supremum of the integral of all Co functions which
vanish outside G, and are <1 in Gj the usual p»roperties of volume
are shown to hold. Then outer meesure and sets of measure zero are
defined in the usual fashion. Measurable sets are defined as those
which can be approximated arbitrarily closely by open sets, 1.e.
the outer measure of the difference can be made arbitrarily small,
The countable addi tivity of measure is demonstrated; that the com-
plement of a measurable set is measurable is shown only in the
section on measurable functions, Then ¢~ rings and Borel sets are
defined, and related to messurable sets,

The usual example of a nonemeasurable set is'presented and the
Haussdorf paradox and related matters are brlefly mentioned.

Next we define by completion the Ll space with respect to an
integral I. We show that every sequence of Co functions which 1s a
Cauchy sequence in the L1 norm contains a sub-sequence which con-
verges a.e. with respect to the measure induced by I. Such an 2.6,
1imit is called an integrable function., The abstract L, space is
shown to be in 1 - to - 1 correspondence with the equivalence class
of integrable functions and it is shown that L1 convergence and
convergence a.e. are consistent. The prineciple of dominated con-
vergence and Fatou's lemma are proved.

ol By which we mean & metric space in which all bounded sets are
aomnaat.
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Measurable functions are defined in the usual faéhion; it is

- shown that sums and limits of measurable functions are measurable,
Esoroff's theorem is proved (but not used anywhere subsequently).
It 1s shown that every integrable function is measurable, and that
every dominated messurable function is integrable., The well-known

formula for the value of the integral as the limit of approximate
sums is derived as an afterthought.

Next abstract messures are defined as countably additive non-
negative set functions. The Riemann—stieléjes integral is defined;
it is shown that the measure induced by an R-S integral is equal to
the original measure ., Signed measures are defined, and R=S integra-
tion with respect to them is also defined. Continuous linear
functionals over Co are defined and shown to be R-S integrals with
respect to signed meesures (Riesz representation theorem).

In the next section we define the concept of measures, singu-
lar or absolutely continuous with respect to another, The Lebesgue
decomposition is given and the Radon-Nikodym theorem is proved,

Thers is a brief last section on differentiation, containing
the classiocal example of a measure on the line without = discrete
part which is absolutely continuous with respect to the Lebesgue
measure, ‘

There ought to be a last chapter on the basies theory of the
Fourier transformation (the l2 theory, tempered distribution and
Fejer's summation), and giving & glimpse into the future, Suggested
topic for brief mention: Arc length and surface area, principle
value integrals and singular integral operators, projection valued
measures, the Haar measure and problems in harmonic analysis,
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Some Famiiiar Function Spaces

The space of real valued functions f(x) defined for all real
X which have derivatives of all order (are infinitely differen-
tiable) is denoted by €%, So is the space of all functions of
k real variables, defined in all Rk, which have partial deriva-
tives of all order. The space of inifinitely differentiable
functions defined in some open set D in denoted by Cgo;when
there 1s no danger of confusion, the subscript D is dropped,

Cg denotes the space of all functions with continuous par-
tial dirivatives up to order n.

These function spaces form an algebra, i,e,, constant mul-
tiples, sums and products of its elements belong to the same
space. Likewise, if a function in ¢ does not vanish in D, 1its

D
reclprocal belongs to the same class,
Examples of infinitely /
differentiable functions:
) (x) 0 x negative
1 a(x) = i
o~1/% x positive ) %b -
11) b(x) = a(x)a(l=-x)
111) o(x) = —2(x)
a(x)+a(r-x)
- ) \
iv) B(x) = = b(x-n/2) 1i) , i
5 n=-=00 0 ' 1

v) p(x) = =

Define pn(X) = p(x-n/2); 111) b/////’_—_j_~

then, by comstrustion, "o 'y

00
> pplx) =1,
=00

Thie is called a (smooth) partition of unity.
By multiplication we obtain a partition of unity in k dimen-
sional space:




1 k
anj(x_) cor P (X =1

Theorem: Let Kl and K2 be two closed dis joint pointsets in Rk.
Then these exists an infinitely differentiable function f(x) in
Rk which 1s equal to zero on Kl’ equsl to one on K2'

Proof: We take the case first that one of the sets, say Ki, is
bounded, Since no point of Kl belongs to K2, and K2 is closed,
each point of K1 lies at some positive distance from K,. Draw
around each point an open sphere with radius less than half that
distance, the set of all these spheres constitutes an open cove-
ring of K,. Since Kl is a closed bounded subset of Rk, it is
compact, so by the Heine-Borel theorem a finite subcovering can
be selected, Let Sl"“"sn be the spheres in this finite cover-
ing, with centers XyseeesXy and radii PysevesTpe Define

n | x-x, |

£(x) = T T o(—— 1) ;
i=1 i

here |x-x,| denotes the distance of x to x;. Clearly, f has the
desired properties,

Ir Kl'is unbounded, we write it as a union of bounded sets:

K.

1 UH

J

where

{xlxe:K:L 3= x| < j+1} ..

5
Denoting by fJ the function vanishing on Hj one on K2 we put
@
£(x) =T ] fj(x) .
§=1

For each x lying in a bounded set, this 1s a finite product,
since all the functions £, (x) are =1 for j > |x|+2, if we make
sure that the radii r used in the previous construction do not
exceed 1, ’



Summary of Results about Riemenn Integrations

Let.f belong to the totality of continuous functions in R
which vanish outside some bounded set. To each such function
the definite integral

k

I(f) = j fk(x)dx
' XeR

1s defined. The functional I(f) has the following properties

i) Linearitv:* I(af+bg) = aI(f)+bI(g) for any real numbers
a, b.

1i1) Translation Invariance: I(Tf) = I(f) for any translate
Tf = f(x+x°).

111) Positivity: I(f) >0 if £ > O.

From the positivity of I we can deduce its boundedness:
Suppose that f vanishes for |x| > R, and denote Max|f(x)|
by M. Then

(%) I(f) < c(R)M ,

¢(R) a constant depending only on R.

Proof 1s left to the reader; of course the best value of
¢(R) 1s the volume of k-dimensional sphere with radius R,

From the boundedness of I(f) follows its continuity:

Let fl,fa,... be a sequence of continuous functions, all v
nishing for [x| > R, which converges uniformly to a function
£(x):

#* We are using here the fact that the class of functions con.

sidered forms a linear space, i.e.,, that linear combinations
of its elements again belong to the class.



Maxlfn(x)-f(x)l W

Then I(fn) — I(f)o
Again, proof is left to the reader.

Theorem;:; The three properties i) - 1ii) characterize the Riem-
ann integral, i.e., any functional I(f) defined for all f of the
above class and satisfying i) - 111) is a constant multiple of
the Riemann integral.

Proof: We shall give the proof in one dimension, We shall ope-
rate with plecewise linear functions, i.e., functions f defined
by

f(x) = a,X+b,

1 X3 SX S %34 3

The numbers 8y and b1 are required to be such that at the corner
Xy the function f(x) 1s continuous, and that it 1s identically
zero for (x) large. In what follows we shall deal with piecewis
linear functions whose corners x4 are rational numbers., A plece
wise linear function looks as follows:

\/

A pilecewise linear function is uniquely charaoterized by specify-
ing the position of its corners and its value at these corners,

Ccr.et:ant multiliples and sums of piecewise linear functions
are again plecewise linear,



The simplest plecewise linear function 1is one with only
three corners, a so-called roof function:

VRN

N,

-’f

Lemma: Every plecewlse linear function is the sum of roof func-
tions: '

f(x) =3 ri(x)

where ri(x) 1s the roof function equal to f(x) at X4, zero for

X <Xy_, and x;.1 <X, Here x; 1s a finite, monotonic sequence
of points which includes the corners of f. If the corners of f
are rational, we can choose the X4 to be a set of equidistant

rational points. Denoting by r3 the normalized symmetric roof
function

fo X < -d
d+x -d <x <0
%h)={dd 0<x=<d
0 d <x
\.

pictured on the graph:




we can say:

Every plecewise linear function with rational corners 1s the
linear combination of translates of rys d the reciprocal of a
suitably chosen integers:

£ =7 ayra(x-x;) .

In particular, the function rl(x) can be written as the 1i-
near combination of translates of T4 if d is the reciprocal of an
integer. Using linearity and translation invariance of I we see
that I(rd) is uniquely determined once I(rl) is pecified, and
consequently also I(f) is uniquely defined. Next we use the re-
sult

The set of piecewlse linear functions with rational corners
Is dense (in the maximum distance) in the set of all continuous
functions which vanish outside a finite interval,

We sketch the proof, which is quite simple: Let f(x) be any
continuous function which 1s zero outside a finite interval., On
the finite interval on which f 1s different from zero, f is uni-
formly continuous, * l1.e., given any €, we can find 6 such that
|£(x)=f(y)| < € when |x-y| < 6. Now divide the interval in ques-
tion by a finite number of rational subdivisions Xy into subin-
tervals of length less than 6, and construct the piecewise linear
function g(x) equal to f(x) at the points Xye It is clear that
|£(x)-g(x)]| < e. Letting ¢ tend to zero, we obtain f as the uni-
form limit of piecewise linear functions 8o Since we have al-
ready shown that I(ge) is uniquely determined in terms of I(rl),
by using the continuity of I we see that I(f) too 1s determined.

Here are some simple applications of the aforementioned
uniqueness theorem for the integral:

¥ fThis 1s a special instance of the result that a continuous

function on a compact set is uniformly continuous.



