Francisco Marcellan
Walter Van Assche (Eds.)

Orthogonal Polynomials
and Special Functions

Computation and Applications

Lecture Notes in Mathematics

1883

@ Springer



F. Marcellan - W.Van Assche (Eds.)

Orthogonal Polynomials
and Special Functions

Computation and Applications

@ Springer



Editors

Francisco Marcellan

Departamento de Matematicas
Universidad Carlos III de Madrid
Avenida de la Universidad 30
28911 Leganés

Spain

Walter Van Assche
Department of Mathematics
Katholieke Universiteit Leuven
Celestijnenlaan 200B

3001 Leuven

Belgium

e-mail: pacomarc@ing.uc3m.es e-mail: walter@wis.kuleuven.be

Library of Congress Control Number: 2006923695

Mathematics Subject Classification (2000): 33C45, 33C50, 33E17, 33F05, 42C05, 41A55
65E05, 65F15, 65F25

ISSN print edition: 0075-8434

ISSN electronic edition: 1617-9692

ISBN-10 3-540-31062-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31062-4 Springer Berlin Heidelberg New York

DOI 10.1007/b128597

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

(© Springer-Verlag Berlin Heidelberg 2006

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply.
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and SPI Publisher Services using a Springer IXTEX package

Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 11605546 VA41/3100/SPI 543210



Preface

These are the lecture notes of the fifth European summer school on Orthog-
onal Polynomials and Special Functions, which was held at the Universidad
Carlos III de Madrid, Leganés, Spain from July 8 to July 18, 2004. Previous
summer schools were in Laredo, Spain (2000) [1], Inzell, Germany (2001) [2].
Leuven, Belgium (2002) [3] and Coimbra, Portugal (2003) [4]. These summer
schools are intended for young researchers preparing a doctorate or Ph.D. and
postdocs working in the area of special functions.

For this edition we were happy to have eight invited speakers who gave
a series of lectures on a subject for which they are internationally known
experts. Seven of these lectures are collected in this volume. The lecture of
J. 5. Geronimo on WKB and turning point theory for second order difference
equations has been published elsewhere [5].

The lectures fall into two categories: on one hand we have lectures on com-
putational aspects of orthogonal polynomials and special functions and on the
other hand we have some modern applications. The computational aspects
deal with algorithms for computing quantities related to orthogonal polyno-
mials and quadrature (Walter Gautschi’s contribution), but recently it was
also found that computational aspects of numerical linear algebra are closely
related to the asymptotic behavior of (discrete) orthogonal polynomials. The
contributions of Andrei Martinez and Bernhard Beckermann deal with this in-
teraction between numerical linear algebra, logarithmic potential theory and
asymptotics of discrete orthogonal polynomials. The contribution of Adhe-
mar Bultheel makes the transition between applications (linear prediction of
discrete stationary time series) and computational aspects of orthogonal ratio-
nal functions on the unit circle and their matrix analogues. Other applications
in this volume are quantum integrability and separation of variables (Vadim
Kuznetsov), the classification of orthogonal polynomials in terms of two lin-
ear transformations each tridiagonal with respect to an eigenbasis of the other
(Paul Terwilliger), and the theory of nonlinear special functions arising from
the Painlevé equations (Peter Clarkson).
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Walter Gautschi gave a lecture about. Computational methods and software
for orthogonal polynomials, in particular related to quadrature and approxi-
mation. His lecture describes many algorithms which can be used in Matlab.
The lecture of Andrei Martinez-Finkelshtein is about Equilibrium problems
of potential theory in the complex plane and gives a brief introduction to the
logarithmic potential in the complex plane and the corresponding equilibrium
problems. Minimizing logarithmic energy is very close to best polynomial ap-
proximation. In his lecture the equilibrium problem is described in the classical
sense, but also the extensions with external fields and with constraints, which
are more recent, are considered. The lecture of Bernhard Beckermann on Dis-
crete orthogonal polynomaials and superlinear convergence of Krylov subspace
methods in numerical linear algebra makes heavy use of the equilibrium prob-
lem with constraint and external field, which is a necessary ingredient for
describing the asymptotics for discrete orthogonal polynomials. This asymp-
totic behavior gives important insight in the convergence behavior of several
numerical methods in linear algebra, such as the conjugate gradient method,
the Lanczos method, and in general many Krylov subspace methods.

The contribution of Adhemar Bultheel and his co-authors on Orthogonal
rational functions on the unit circle: from the scalar to the matriz case extends
on one hand the notion of orthogonal polynomials to orthogonal rational func-
tions and on the other hand the typical situation with scalar coefficients to
matrix coefficients. The motivation for using orthogonality on the unit circle
lies in linear prediction for a discrete stationary time series. The motivation
for using rational functions is the rational Krylov method (with shifts) and
numerical quadrature of functions with singularities, thereby making the link
with the lectures of Gautschi and Beckermann.

Vadim Kuznetsov's lecture on Orthogonal polynomials and separation of
variables first deals with Chebyshev polynomials and Gegenbauer polynomi-
als, which are important orthogonal polynomials of one variable for which he
gives several well known properties. Then he considers polynomials in several
variables and shows how they can be factorized and how this is relevant for
quantum integrability and separability.

Paul Terwilliger describes An algebraic approach to the Askey scheme
of orthogonal polynomaials. The fundamental object in his contribution is a
Leonard pair and a correspondence between Leonard pairs and a class of or-
thogonal polynomials is given. Even though the description is elementary and
uses only linear algebra, it is sufficient to show how the three term recurrence
relation, the difference equation, Askey-Wilson duality, and orthogonality can
be expressed in a uniform and attractive way using Leonard pairs.

Finally, Peter Clarkson brings us to a very exciting topic: Painlevé equa-
tions — Nonlinear special functions. The six Painlevé equations, which are
nonlinear second-order differential equations, are presented and many impor-
tant mathematical properties are given: Bécklund transformations, rational
solutions, special function solutions, asymptotic expansions and connection
formulae. Several applications of these Painlevé equations are described, such
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as partial differential equations, combinatorics, and orthogonal polynomials,
which brings us back to the central notion in these lecture notes.

We believe that these lecture notes will be useful for all researchers in the
field of special functions and orthogonal polynomials since all the contribu-
tions contain recent work of the invited speakers, most of which is not available
in books or not easily accessible in the scientific literature. All contributions
contain exercises so that the reader is encouraged to participate actively. To-
gether with open problems and pointers to the available literature. young
researchers looking for a topic for their Ph.D. or recent postdocs looking for
new challenges have a useful source for contemporary research problems.

We would like to thank Guillermo Lépez Lagomasino, Jorge Arvesu Car-
ballo, Jorge Sanchez Ruiz, Maria Isabel Bueno Cachadina and Roberto Costas
Santos for their work in the local organizing committee of the summer school
and for their help in hosting 50 participants from Austria, Belarus, Belgium,
Denmark, England, France, Poland, Portugal, South Africa, Spain, Tunisia.
and the U.S.A. This summer school and these lecture notes and some of the
lecturers and participants were supported by INTAS Research Network on
Constructive Complex Approximation (03-51-6637) and by the SIAN activ-
ity group on Orthogonal Polynomials and Special Functions.
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VIII  Preface

During the processing of this volume we received sad news of the sudden
death on December 16, 2005 of Vadim Kuznetsov, one of the contributors.
Vadim Kuznetsov enjoyed a very strong international reputation in the field
of integrable systems and was responsible for a number of fundamental contri-
butions to the development of separation of variables techniques by exploiting
the methods of integrability, a topic on which he lectured during the summer
school and which is the subject in his present contribution Orthogonal poly-
nomials and separation of variables. We dedicate this volume in memory of
Vadim Kuznetsov.

Vadim Kuznetsov 19632005

Leganés (Madrid) and Leuven, Francisco Marcellan
Walter Van Assche
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Orthogonal Polynomials, Quadrature, and
Approximation: Computational Methods and
Software (in Matlab)

Walter Gautschi

Department of Computer Sciences, Purdue University,
West Lafayette, IN 47907, USA
e-mail: wrg@cs.purdue. edu

Summary. One of the main problems in the constructive theory of orthogonal
polynomials is the computation of the coefficients, if not known explicitly, in the
three-term recurrence relation satisfied by orthogonal polynomials. Two classes of
methods are discussed: those based on moment information, and those using dis-
cretization of the underlying inner product. Other computational problems consid-
ered are the computation of Cauchy integrals of orthogonal polynomials, and the
problem of modification, i.e., of ascertaining the effect on the recurrence coefficients
of multiplying the weight function by a (positive) rational function. Moment-based
methods and discretization algorithms are also available for generating Sobolev or-
thogonal polynomials, i.e., polynomials orthogonal with respect to an inner product
involving derivatives. Of particular interest here is the computation of their zeros.

Important applications of orthogonal polynomials are to the development of
quadrature rules of maximum algebraic degree of exactness, most notably Gauss-
type quadrature rules, but also Gauss-Kronrod and Gauss-Turan quadratures. Mod-
ification algorithms and discretization methods find application to constructing
quadrature rules exact not only for polynomials, but also for rational functions
with prescribed poles. Gauss-type quadrature rules are applicable also for comput-
ing Cauchy principal value integrals. Gaussian quadrature sums are expressible in
terms of the related Jacobi matrix, which has interesting applications to generating
orthogonal polynomials on several intervals and to the estimation of matrix func-
tionals.

In the realm of approximation, the classical use of orthogonal polynomials, in-
cluding Sobolev orthogonal polynomials, is to least squares approximation to which
interpolatory constraints may be added. Among other uses considered are moment-
preserving spline approximation and the summation of slowly convergent series.

All computational methods and applications considered are supported by a soft-
ware package, called 0PQ, of Matlab routines which are downloadable individually
from the internet. Their use is illustrated throughout.
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1 Introduction

Orthogonal polynomials, unless they are classical, require special techniques
for their computation. One of the central problems is to generate the coeffi-
cients in the basic three-term recurrence relation they are known to satisfy.
There are two general approaches for doing this: methods based on moment
information, and discretization methods. In the former, one develops algo-
rithms that take as input given moments, or modified moments, of the un-
derlying measure and produce as output the desired recurrence coefficients.
In theory, these algorithms yield exact answers. In practice, owing to round-
ing errors, the results are potentially inaccurate depending on the numerical
condition of the mapping from the given moments (or modified moments) to
the recurrence coefficients. A study of related condition numbers is therefore
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of practical interest. In contrast to moment-based algorithms, discretization
methods are basically approximate methods: one approximates the underlying
inner product by a discrete inner product and takes the recurrence coefficients
of the corresponding discrete orthogonal polynomials to approximate those of
the desired orthogonal polynomials. Finding discretizations that yield satis-
factory rates of convergence requires a certain amount of skill and creativity
on the part of the user, although general-purpose discretizations are available
if all else fails.

Other interesting problems have as objective the computation of new or-
thogonal polynomials out of old ones. If the measure of the new orthogonal
polynomials is the measure of the old ones multiplied by a rational function,
one talks about modification of orthogonal polynomials and modification algo-
rithms that carry out the transition from the old to the new orthogonal poly-
nomials. This enters into a circle of ideas already investigated by Christoffel
in the 1850s, but effective algorithms have been obtained only very recently.
They require the computation of Cauchy integrals of orthogonal polynomials
— another interesting computational problem.

In the 1960s, a new type of orthogonal polynomials emerged the so-
called Sobolev orthogonal polynomials — which are based on inner products
involving derivatives. Although they present their own computational chal-
lenges, moment-based algorithms and discretization methods are still two of
the main working tools. The computation of zeros of Sobolev orthogonal poly-
nomials is of particular interest in practice.

An important application of orthogonal polynomials is to quadrature.
specifically quadrature rules of the highest algebraic degree of exactness. Fore-
most among them is the Gaussian quadrature rule and its close relatives, the
Gauss-Radau and Gauss-Lobatto rules. More recent extensions are due to
Kronrod, who inserts n + 1 new nodes into a given n-point Gauss formula,
again optimally with respect to degree of exactness, and to Turan, who al-
lows derivative terms to appear in the quadrature sum. When integrating
functions having poles outside the interval of integration, quadrature rules of
polynomial/rational degree of exactness are of interest. Poles inside the in-
terval of integration give rise to Cauchy principal value integrals, which pose
computational problems of their own. Interpreting Gaussian quadrature sums
in terms of matrices allows interesting applications to orthogonal polynomials
on several intervals, and to the computation of matrix functionals.

In the realm of approximation, orthogonal polynomials, especially discrete
ones. find use in curve fitting, e.g. in the least squares approximation of dis-
crete data. This indeed is the problem in which orthogonal polynomials (in
substance if not in name) first appeared in the 1850s in work of Chebyshev.
The presence of interpolatory constraints can be handled by a modification
algorithm relative to special quadratic factors. Sobolev orthogonal polynomi-
als also had their origin in least squares approximation, when one tries to
fit simultaneously functions together with some of their derivatives. Physi-
cally motivated are approximations by spline functions that preserve as many
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moments as possible. Interestingly, these also are related to orthogonal poly-
nomials via Gauss and generalized Gauss-type quadrature formulae. Slowly
convergent series whose sum can be expressed as a definite integral naturally
invite the application of Gauss-type quadratures to speed up their conver-
gence. An example are series whose general term is expressible in terms of
the Laplace transform or its derivative of a known function. Such series occur
prominently in plate contact problems.

A comprehensive package, called OPQ, of Matlab routines is available that
can be used to work with orthogonal polynomials. It resides at the web site

http://www.cs.purdue.edu/archives/2002/wxg/codes/

and all its routines are downloadable individually.

2 Orthogonal Polynomials

2.1 Recurrence Coefficients
Background and Notation

Orthogonality is defined with respect to an inner product, which in turn in-
volves a measure of integration, dA. An absolutely continuous measure has the
form

dA(t) = w(t)dt on [a,b], —o0<a<b< oo,

where w is referred to as a weight function. Usually, w is positive on (a,b), in
which case dA is said to be a positive measure and [a,b] is called the support
of dA. A discrete measure has the form

N
dAn (1) = Z wpd(t — xp)dt, o) <z < -+ < TN,
k=1

where ¢ is the Dirac delta function, and usually w; > 0. The support of
dAn consists of its N support points xy,xo, ..., xn. For absolutely continuous
measures, we make the standing assumption that all moments

T = / trdX(t), r=0,1,2,...,
R

exist and are finite. The inner product of two polynomials p and ¢ relative to
the measure d\ is then well defined by

o = L (B a(t)dA(),

and the norm of a polynomial p by

Ipllax = vV (P, P)ar-



