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PREFACE

One reason for the existence of this preface is to provide a place where
I can acknowledge the help I received and thank the helpers, my colleagues
and good friends, Mr. Lewis Feldman and Dr. Frank Lane. I repeatedly
called on them and brought with me what must have been some ten thousand
awkward sentences—my best attempt at an English manuscript. Several of
their evenings were spoiled before I was able to obtain a readable manuscript.
Incidentally, some of my mathematics was improved too. The awkward
expressions and the dubious mathematics still scattered around are the
original contribution of my own stubbornness. '

The book itself finds its justification in my experience both as a teacher
and as an applied mathematician. I have taught in schools of engineering
and physics, and my current work deals for the great part with the application
of mathematical techniques to the investigation of engineering problems.
Therefore, I naturally regard mathematics as a tool for solving physics
problems.

A good tool stimulates the ingenuity and the creativeness of the user.
Different expressions of art become attainable by use of different painting
tools. Different industrial designs are suggested by different power tools.
And it is well known that many chords and melodies have been inspired by
the arrangement of the notes on a keyboard.

A tool becomes a Tool when the user masters its technique. The handling
is then unconscious, and the mind is left free to deal with applications.
For example, a language learned as vocabulary and grammar is a foreign
language; it becomes a tool when one can joke and appreciate jokes in it.

With these ideas in mind, the question remains, “Is this mastery the
result of a natural gift or can it be largely achieved through good training 7’
Personally, I am inclined to think that the latter is the case, though a natural
disposition is obviously required. I saw many potentlally talented people
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vi PREFACE

deterred by poor teaching. A good teacher is one that combines the spirit
of an eager student with the knowledge of an accomplished scientist. It can
be observed that often the earlier works of famous authors, artists, and
composers are extremely appealing and expressive, though sometimes lacking
in sophistication, while later works of these men are more obscure and
profound. As the man matures, he tends to become more interested in
himself and his own research. He loses interest in communicating with less
sophisticated minds, especially in discussing facts and ideas that to him are
so commonplace as to be trivial, not to say primitive. These attitudes are
bear traps for teachers and I trust that I avoided them.

In writing this book, I reviewed my student notes, and I did my best to
recall my doubts, dilemmas, and misunderstandings in an effort to help
others to overcome them as I have.

I would be most happy if I succeeded.

Gino Moretti
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I INTRODUCTION

I.I. FUNCTIONS

In this introductory chapter, some definitions and concepts usually
learned in courses on calculus will be recalled and re-examined. The first of
these, which appears in the very title of the book, is the concept of “function.”

We take for granted thatthe reader knows what a formula like

(1.01) y=s&

means. However, in this text we shall define functions in many different
ways; it may be interesting to review them briefly.

Usually, by (1.01), we mean that a number of prescribed arithmetical
operations must be performed on x to obtain the corresponding value of y.
For example,

(1-02) y=a, - ax -+ asxﬁ + e + anxn

where ay, a,, @y, . . . , a, are constants, gives y as the result of a finite number
of products and sums;

1.03 _axtb
(1.03) y oy

where a, b, ¢, and d are constants, requires two products, two sums, and a
division to get y;

(1.04) y=41—x2

implies the computation of one product, one difference, and one square root.
|



2 INTRODUCTION 1.1

When a function is defined by the method described above, the range of
values of x in which a corresponding y can be computed is easily found. In
case (1.02), any real value of x provides a value of y. In case (1.03), any real
value of x provides a value of y, except where x = —dJc, which makes the
denominator vanish and the division meaningless. In case (1.04) only values
of x contained between —1 and 1 can provide a corresponding value of y
because, out of that interval, the radicand is negative and no real number
can be the square root of a negative one.

We shall say that the function in (1.02) is defined for every real value of
x, the function in (1.03) is defined for every real value of x, except —d/c, and
the function in (1.04) is defined for every real value of x between —1 and 1.

Sometimes, the function is expressed by a formula in an interval of
values of x and by another formula in another interval. Here is an example:

—_ x2 Pl
005 - V1 —x (-l<x<1)
0 (Ix] > 1)

The first definition of the function is the same as that of (1.04), but a second
definition has been given.for the values of x outside the range of validity of
(1.04). Now y is defined again for every real value of x.

Obviously, the combination of two (or more) definitions is arbitrary but
permissible. It is commonly used to avoid complications; an interesting
example will be shown in Section 1.34.

I.Il. FUNCTIONS DEFINED BY SERIES EXPANSIONS

So far, we have seen examples of functions defined by a finite number of
arithmetical operations. In mathematics and in physics, however, much more
interesting functions are defined by an infinite number of arithmetical
operations, such as series and integrals. Following are three examples:

x2 Xt ®
(1.06) y=1+x+2_!+§+...=”§”:
2 3 n=1 n
n 3
(1.08) ( Eo(_ 1) ____n'(n+P)'( )

The reader is asked to ignore, for a moment, what he already knows
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about series and put himself in the place of one who sees the symbol

2 Un

n=1

for the first time. A definition is needed to give this symbol a meaning.

A sum of a finite number of terms can be computed in many different
ways, according to the ordinary rules of arithmetic. But, dealing with a sum
of infinitely many terms, one is naturally inclined to begin summing some of
them, say the first p terms, and then to keep adding-on the following terms,
one after the other, observing the trend of these partial sums. Here the concept
of limit enters the picture. If the partial sums appear to accumulate in the
neighborhood of a certain value, we will accept it as the sum of the infinitely
many terms, without trying to perform the whole computation, which
would require an infinite time. The symbol given above is thus defined as

(1.09) Dol I gL T T

n=1 p—® n=1 b ]

where s, is the partial sum of order p, that is, the sum of the first p terms in the
series.
The series is said to converge to § if a finite number

S = lim s,
exists. Tk

We want to make very clear that this definition is one among many
possible definitions of the sum of a series, although it is perhaps the simplest,
most natural, and most commionly used. Later on, we will need other, more
involved, but more powerful definitions (Section 12.2).

The three examples given above, (1.06), (1.07), and (1.08), are power
series (series whose terms are powers of x times a constant). Any series of
functions of x defines a function of x only at those values of x at which the
series converges. If the definition (1.09) is accepted, the series (1.06) and
(1.08) converge at every real value of x, whereas (1.07) converges only when
—1 < x < 1. Other series, whose terms do not contain powers but more
complicated functions, can also be considered (see Sections 1.34 and 1.5,
Chapter 12 and 14, etc.).

If a function defined by a series is frequent.ly used, it is convenient to give
it a name and a special symbol. For example, the function defined by (1.06)
is called the exponential function and is indicated by the symbol

y=¢xpx or y=¢€"
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The function defined by (1.07) is called the natural logarithm and is indicated
by the symbol
y=In(+x)

The function defined by (1.08) is called the Bessel function of the first kind and
order p and is indicated by the symbol

Y= Jp(x)

1.12. FUNCTIONS DEFINED BY INTEGRALS

Functions defined by integrals appear naturally when a function is sought,
the derivative of which is one of the functions mentioned in Section 1.1, and
the function itself is not any of those functions or any combination of a
finite number of them. For example,

(1.10) =l
1.t
@ dt
111 il
(1.11) y -[°1+:”

In the first case the function can be defined only for positive values of x
because the integral becomes infinitely large at x = 0, and thus integrating
through the origin has no meaning. It can also be proved that, when x
belongs to the interval between 0 and 2, the values of the function coincide
with those of (1.07) when —1 < x < 1. Therefore, (1.10) can be interpreted
as a generalization of (1.07) to the whole positive set of numbers and is called
the natural logarithm of x:

y=Inx

The functions defined by (1.11) at every value of x is called the arctangent
or the inverse tangent and is indicated by the symbols

y = arctan x = tan™! x

The first, y = arctan x, is preferable to avoid the confusion which might
arise from using a negative power.

A more complicated case occurs when the integrand itself is defined by a
series or an integral. For example, the function logarithmic integral is defined
by
- dt

y=lix=f°h”



