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Preface

This handbook has been compiled to serve as a practical rveference for prac-
ticing engineers and engineering students who possess basic groundwork in
college-level mathematics. In each area of basic mathematics, key equations
are presented, without detailed derivations.

A major part of the handbook has been developed by a team of faculty mem-
bers of the Department of Mechanical Engineering, The University of Akron.
The faculty members participating in this program have significant industrial
experience, which they bring to the classroom. Thus, this handbook becomes
an extension of that enriching quality of experience. '

The authors and editors do not claim cotpleteness. The vastness of the field
precludes it. But the equations presented here should prove nseful to graduate
engineers. To serve practical needs, the authors have emphasized practice
and subordinated theory.

Because mathematics is an extremely broad field that includes a large and
growing body of literature on computers, for example, choices had to be made.
The choices represented here have been derived from course work in mechan-
"ical engineering, instead of the mathematics of physics or electrical and
electronic engineering. Thus, the branches of mathematics emphasized are
those useful in the design and manufacturing environment of the typical
metalworking company.

Part I of this handbook contains basic equations and theorems of algebra,
trigonometry, geometry, analytical geometry, calculus, etc., in ascending
order of difficulty, as these subjects are frequently introduced to students.

In Part II, mathematical equations and illustrations present key elements
of various disciplines of mechanical engineerjng. The focus is on those equa-
tions that help lead to solutions of practical problems in mechanical analysis
and design.

To further aid students and practicing engineers, lists of selected references
are presented at the end of each chapter in Part IL. It is the sincere hope of the
authors and editors that if the precise equation being sought by the reader
isn't found in this handbook, our efforts will nevertheless help lead to the
answer sought.

il
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1
Algebra

FUNDAMENTAL CONCEPTS
An algebraic expression includes one or more algebraic quantities (numbers .
or letters) connected by such signs of operations as +, —, :, and \/_, w1th.'

brackets indicating successive operations.

An equality of two algebraic expressions is an identity when the equality
holds for all substitutions of arbitrary numerical values for the letters occur-
ring in the expression. An equation is an equallty that is valid only for cer-
tain definite values.

An identity transformation, the process of obtaining one algebraic expression
from another equal expression, can be done in many ways, according to the
aim of the transformation. An expression can be given a more compact form
suitable for substitution of numerical values or a form suitable for such opera-
tions as solvmg equations, logarithmic calculation, dlﬁ'erenhatlon, or mte-
gration.

DEFINITIONS

Monomial. A monomial is a single term: a, ab, or x2y°.

Binomial. A binomial defines two terms that are added or subtracted:
a+ by x? + y% or ab + xty2

Polynomial. A polynomial includes two or more terms added or sub-
tracbed:a+b+corxz+3x‘—5xy+y2.

Ratlona.l Term. A rational term is one not contammg the root of a vari-
able: x2, 1/y or u.

v!rrational Term. An irrational term contains a root of a variable: a'/® or
~ .



2/BASIC MATHEMATICS

Integral Term. An integral term is one in which the variable does not
occur in the denominator. For example, x/y is integral with respect to x but
not with respect to y. )

Degree of a Term. The degree of a term means the number of literal
factors in a term, and it also equals the sum of the exponents of the literal
factors. The degree of 4a2b2is 2 + 3 = 5, for example.

Variable. A variableisa symbol that represents any value of a given set
of elements. For example, in A = wr3, where A is the area of a circle with
radius r, and m = 3.14159, A and r are variables. When A changes as r is
varied, then r is the independént variable and A the dependent variable.

Constant. A constant is a variable with one element only. An absolute or
numerical constant always has the same value. An arbitrary constant, or
parameter, has one value under certain conditions and different values under
other conditions. Symbole representing numbers 11 or V2 or 3.14159 are
absolute constants. In the expression ¢ = kP, where ¢ is the elongation of a
bar due to a load P, k is a constant that varies with different materials; hence,
k is a parameter.

CLASSIFICATION OF NUMBERS

Real Numbers (positive and negative). Real numbers include rational and
irrational numbers. A rational number is expressible as the quotient of two
integers, that is, integers such as —1, 2, 53, or fractions, as %, —%. An irra-
tional number is not expressible as the quotient of two integers, as V2, . ,
The absolute value of a real number is the number itself if the number is
positive, and the number with its sign changed if it is negative, as, for exam-
ple, |3 = |-3| =

Imaginary Numbers. An imaginary number is a product of a real num-
ber and the magxnary unit i(=V-1). Electrical engineers use j to avoid
confusion with i for current. Example: V-2 = VZ2i.

Complex Numbers. A complex number is a sum of a real number and
an imaginary number, as g + bi, with @ and b real numbers, —3 + 0.5i. A
real number may be regarded as a complex number in which & = 0, and an
imaginary number as one in which a = 0. The absolute value of a complex
number a + bi is VaZ + b2, as, for example, |~3 + 0.5i| = V9 - ¥ = 3.04+.
Relationships of complex numbers can be expressed in the following forms:

i=V-1,i2=-1,i%=—i;i*=1,i% =i, etc.
at+bi=c+diifandonlyifa=¢,b=d
@+b)+ct+di)=(@+c)+ (b +d)i

(a + bi)(c + di) = (ac — bd) + (ad + bc)i
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at b (a+bie~-di ac+ba'$bc-
c+di (c+di)c—di ..»dz‘c+d2

NOTATIONS

The main points ¢f separation in a simple algebraic expression are the
+ and — signs. Thus, a + b X ¢ —d + x + y is interpreted as ¢ + (b X ¢) —
(d + x) + y. The range of operation of the symbols x and + extends only to
the next + or — sign. Between the signs X and + themselves, a + b X ¢ means
a + (b X ¢). The + sign is the stronger separative. Because this rule is not
strictly followed, parentheses should be used to avoid ambiguity. '

Exponents and radical signs influence only the next adjacent quantity.
Thus 2ax® means 2a(x?), and V2ax means (V2)(ax). Instead of V2ax, it is
safer, however, to write V2 - ax, or axV2. Any expression within paren-
theses is to be treated as a single quantity. A horizontal bar serves the same
purpose as parentheses.

The notation a - b, or simply ab, means a x b; and a:b, or a/b, means a+b.

Factorials. The symbol n!{when nisawhole number) means: “n factorial,”
and means the product of the natural numbers from 1 to n, inclusive. Thus
21=1x2; 3!1=1x2x%x3 and 4'=1x2x 3 x 4. The Stirling formula
gives approximate values of n! for large n:

nl=n"e"V2nn

BASIC LAWS

Existence Law for Addition. Adding any two numbers ¢ and b always
gives a single number c:a + b = ¢

Commutative Law. Algebraic numbers can be added or multiplied re-
gardless of order: a + b = b + a; ab = ba.

 Associative Law. The sum or product of three or more algebraic terms
is unaffected by the grouping of the terms:

a+b+te=a+(b+e=i{a+b)+ec
abe = a(bc) = (ab)c = (ac)b

Distributive Law. a(b + ¢) = ab + ac.

Operations with Zero and Negative Numbers. A number or letter
without a preceding sign is assumed to be positive.
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a+(=g 0-a=-a
a+{(—a)=0 ~(~a)=a

a-0=0 a(—~b)=—ab
0/a=0,ifa+ 0 (—a)(-b)=ab

If ab = 0, then either a = 0 or b = 0 or a = b = 0. /0 is undefined.

Order Relationships. If ¢ and b are real numbers, then either a < b or
a = bor a>b.If cis a third real number, andifa < band b < c,thena <ec.

Axioms. The following relationships apply in algebraic transformations:

@ If equals are added to equals, the sums are equal

o If equals are subtracted from equals, the differences are equal

® If equals are multiplied by equals, the products are equal

@ If equals are divided by equals (except zero), the quotients are equal

® Like powers or like roots of equals are equal

@ Numbers or terms equal to the same number or equal numbers are equal
@ The whole equals the sum of its parts

IDENTITIES

An identity is a statement in symbolic form that holds for all values of the
variables involved. For example, (¢ + b)(a — b) = a® — b? is true regardless
of the values substituted for a and b. Common identities are listed below.

POWERS
{(—a)* =a" if nis even
(—a)® = —a”, if n is odd
am . an = am+u

m

_;_ = am—-n
a
(ab)" = a™b"

a% = 1; 0" = 0; 0° is meaningless



