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ABSTRACT: 1In this memoir, we study the interrelations between the
topological, measure theoretical and geometrical structures in certain
classes of Banach spaces. The focus is on those spaces whose bounded
subsets have arbitrarily norm-small convex combinations of slices.
This class contains spaces with the Radon—-Nikodym property as well as
B-convex Banach spaces. The topological analysis leads to the concept
of "first class functions around sets”. This extension of the
classical notion of Baire-1 functions is developed in a general
non-linear setting. The study of bounded linear operators from L1

into these spaces leads to the measure-theoretical analysis of those

@
subsets of L with "small" or "regular oscillation". Various
geometrical properties of such spaces-are established: A Krein-Milman
type result as well as the existence of some geometrically

distinguished points. The special cases of Banach lattices and

*
C —algebras are also considered.
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0. Introduction: 1In the last twenty years, several remarkable
results have been established in the context of infinite dimensional
Banach space theory. Most of these results emphasize the interplay
between the topological, geometrical and measure theoretical
structures of a Banach space. Here are two well known prototypes of
such interrelations. They are due to the combined efforts of several
authors and we refer the reader to the books [8] and [14] for a
detailed account of their history and for the notions involved in
their statements.
Theorem (A): Let X be a Banach space and let D be a closed convex
bounded subset of X. The following properties are then equivalent:
(i) All D-valued martingales norm converge almost surely.
(ii) Every non-empty subset of D has slices of arbitrarily small
diameter.

Theorem (B): Let Y be a separable Banach space and let D be a

* *
w —compact convex subset of Y . The following properties are then
equivalent:

(i) All D-valued martingales converge in the Pettis-norm.

(ii) Every functional in Y** is the pointwise limit on D of a
bounded sequence of elements in Y.
A set verifying the conditions of Theorem (A) is then said to
have the Radon-Nikodym property (R.N.P) while a set verifying those of

Theorem (B) is said to have the Weak Radon-Nikodym property

(W.R.N.P). In both cases, the set is then the norm closed convex hull
of its extreme points.

The concept of a Radon-Nikodym set turned out to be central in
the study of extremal structures in convex sets, integral
representations and problems involving non-linear optimization ([8],
[14], [19]). On the other hand, the weak Radon-Nikodym property (for
w*—compact sets) is closely related to the classical Baire theory of
functions and its relatively recent resurgence with the deep theorems
of Bourgain-Fremlin-Talagrand (B.F.T [5]) following the pioneering
work of Rosenthal [38] and Odell-Rosenthal [33].

However, even though these two concepts are now well understood

Received by the editors September 26, 1986.



2 Choussoub, Godefroy, Maurey and Schachermayer

and their theories well developed, a crucial link between them was
still missing. Indeed, for various technical reasons that we shall
discuss below, all results on the weak Radon-Nikodym property are
proved in the case of w*-compact sets. Therefore, unless we are in
this compact case, these results do not apply even for the R.N.P
subsets of dual spaces. Actually, several receat counterexamples show
that "geometrically well behaved” closed convex bounded sets do not
necessarily embed in w*-compact sets which are as "geometrically
regular”. (See the discussion in section VI.A).

One of the reasons for which the w*-compactness coandition is
commonly imposed on a W.R.N.P set D, 1is to insure that the Pettis
measurable limit of the D-valued martingale remains in the set.
Already, Talagraund in his memoir [50], had noticed the irrelevancy of

this constraint and obtained several interesting results about what

*
he called the W .R.N.P sets.

The second reason, which is more relevant, has to do with Theorem

K%
(B)(ii). Note that this assertion means that any functional in Y

is a Baire-1 function on the set D once equipped with the
w*-topology. Since D 1is w*-compact, a large supply of theorems
concerning Baire-1 functions on such spaces is available. However, in
general D need not be a reasonable topological space for the
w*-topology even when it is norm closed. To deal.with this problem we
are led to study the notion of a first class function around a subset
of a compact space.

In section I we isolate the topological setting that is suitable
for our study. Here is the needed concept:

Let D be a subset of a compact Hausdorff space K and let f
be a real valued function on K. We shall say that f is in the

first class around D if for each non-empty subset F of D and any

€ > 0, there exists an open set 0O such that O NF # @ and the

oscillation of f on O N F is less than €. We denote by Bl(K,D)
the class of such functions endowed with the topology of pointwise
convergence on K. Simple examples show that an element f in
BI(K,D) is more than just a function in the first Baire class on the
topological space D. However, it falls short of being in the first
Baire class on K even when D is dense in K. On the other hand,
we show in section I.A that the restrictions of functions in Bl(K,D)

to D are actually "extendable" to Baire-1 functions on K from
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which we can prove that they are pointwise limits on D of a sequence
of continuous functions oun K, thus extending the Baire
characterization theorem to our setting.

In section I1.B, we prove some results about compact subsets of
BI(K,D) that extend the deep theorems of B.F.T [5] on compact subsets
of Bl(K) = BI(K,K). However, in spite of the characterization of
functions in BL(K,D) mentioned above, our results do not seem to
follow directly from those of B.F.T and some refinements of their
methods were needed.

In section II, we study the properties of an affine function in
Bl(K,D) where D 1is a subset of a convex compact K in some
locally convex topological vector space. We show, for instance that
such functions have points of continuity that are also extreme points
relative to the closure of any convex subset of D. We also obtain
that they are pointwise limits on D of sequences of continuous and
affine functions.

In section IIL we isolate the geometrical concepts that are
needed to give a unified treatment of some aspects of R.N.P sets and

w*—compact W.R.N.P sets. Recall first that a slice of a subset D of

a Banach space X 1is a non—empty intersection of D with an open
half-space of X. The following notion was implicit in the work of

Bourgain [3]: The set D is said to be strongly regular if every

non—-empty convex subset of D has convex combination of slices of
arbitrarily small diameter. The following weaker concept also turned

out to be relevant for our study. Roughly speaking, the set D is

%%
said to be regular if once regarded as a subset of X , every

non—-empty convex subset of D has convex combinations of w*-slices

%%
which are "arbitrarily small in the weak topology of X . (Here the

. . . . **
w*¥-slices are meant to be intersections of open-half spaces in X

determined by functionals in X* with the w*-closures of the subset
of D 1in question.)

We then compare these concepts to other well known geometrical
notions in Banach space theory: dentability, huskability, etc. We
also define the corresponding properties for operators between general
Banach spaces in order to describe them from the point of view of the
theory of "operator ideals". This section is essentially a warm-up
for the following ones.

In section IV, we restrict our attention to operators whose
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domain is Ll[O,I], and we are interested in relating the topological

properties of these operators to the measure-theoretical structure of

oo
the range of their adjoints in L . For instance, it was well known

to Grothendieck that an operator T : L1 + X 1is representable by a

Bochner density (or dentable in our terminology) if and only if

* *
T (Ball (X )) 1is equimeasurable in Lm. We give similar
characterizations for strongly regular (resp. regular operators) in

terms of sets of small oscillation (resp. sets of regular oscillation)

o
in L . This allows us to make direct contact with the important work

of Fremlin [17] and Talagrand [50] on stable subsets of Lw. Another
interesting feature of strongly regular (resp. regular) operators on

L1 is that they are completely characterized as the ones that are

*k
weak to norm (resp. T is weak* to weak) continuous on the positive

*%
sphere of L1 (resp. (Ll) ).
Section V is devoted to the proof of the following theorem: A

Banach space X 1is strongly regular if and only if every operator

from L1 into X 1is strongly regular. This result is parallel to
the well known characterization of Banach spaces X with the

Radon-Nikodym property in terms of the representability of X-valued

operators on L1 (Theorem A).

In section VI, we study the concept of w*-regularity with respect
to a given duality as opposed to what we have done in section III
where the duality was given by the adjoint space. The main result of

this section in that every bounded sequence in a Banach space Y has
*%
a subsequence that pointwise converges (to a point in Y ) on any

given w*-regular subset of Y*. This provides a satisfactory answer
to our initial query since the assumption of w*-compactness of the set
in question is not needed.

In section VII, we deal with the structure of regular Banach
spaces. We obtain, for instance, that they are unique isometric
preduals of their adjoints. Moreover, their convex bounded subsets
are contained in the norm closed convex hull of the extreme points of
their w*-closures. We also show that a regular bounded subset of a
Banach space X actually has the Radon-Nikodym property in the

following two special cases:



Some Topological and Geometrical Structures in Banach Spaces 5

(i) If X 1is a Banach lattice not containing a copy of ¢y

(ii) If X 1is a predual of a Von Neuman algebra.

We note that an important result in this direction was recently
established by the fourth-named author [42]: Namely that a strongly
regular Banach space has the Radon-Nikodym property provided it has
the Krein-Milman property.

In section VIII we give a supply of examples that might
illuminate the ideas behind the general results obtained throughout
the paper. We also give a few counterexamples to some questions that
arise naturally from our study.

This memoir essentially consists of a combination of the
unpublished manuscript of Ghoussoub-Godefroy-Maurey [23] and the
subsequent unpublished paper of Schachermayer [43]. The first one
dealt with the topological and geometrical structures of sets while
the second developed the same concepts from the "operator theoretical”
point a view. The decision to combine these two papers stems from our
desire to give a readable account of this part of infinite dimensional
Banach space theory.

We are grateful to G. Debs, G. Mokobodzki and J. St. Raymond of
the University of Paris VI for very fruitful coanversatioans during the
preparation of this paper.

The two first named authors are also thankful for the kind
hospitality and stimulating atmosphere offered to them by Nigel
Kalton, Elias and Paulette Saab during their visit to the University
of Missouri at Columbia.

The fourth - named author want to thank F. Lust-Piquard, J.B.
Cooper, V. Losert, H.P. Rosenthal, Ch. Stegall and A. Wessel for
stimulating discussions and suggestions.

Special thanks go to U. Haagerup and M. Talagrand for allowing us
to include some of their recent and unpublished results that settle
affirmatively two questions raised in a preliminary version of this
memoir.

Finally, we are grateful to the Department of Mathematics at
Texas A&M University for sponsoring the typing of this work which was

handled by Robin Bronson with exceptional care and patience.

September 1986



I. FIRST CLASS FUNCTIONS AROUND A SUBSET OF A POLISH SPACE

A. Characterization of first class functions around sets:

Let D be a subset of a completely regular topological space K
and let f be a real-valued function defined on K. We shall say

that f is in the first class around D if for every non-empty

subset F of D and any € > 0, there exists an open set 0 in K

such that O N F # ¢ and the oscillation of f on O N F is less
than €. We shall denote by Bl(K,D) the family of such functions
endowed with the topology of pointwise convergence on K. Note that
if K 1is Polish BI(K) = Bl(K,K) is the well known class of Baire-1
functions on K.

Recall that a filter U on the set of real-valued functions on

K is said to converge quasi-uniformly on K to the function f if

for all € > 0 and each non-empty closed subset F of K, there
exists an open subset 0 of K with ONF # @ and a set A in U

such that sup f(x) - gx)| £ €.
x€ONF,g€A

Remark: This notion of convergence is behind the remarkable
"subsequence principles"” obtained in [5] for subsets of BI(K)'

Note that if K 1is a Polish space, then a sequence of continuous
functions (fn) pointwise converges to f on K if and only if it

converges quasi-uniformly on K to f. Indeed, for each €>0 and
€ €
every closed subset F of K we have F =U Fn where Fn is the

closed set  {x € F; £.(x) - £ (x) S.e}.n By the Baire category
m>n
theorem, at least one of the Fi, has a non-empty interior. This
clearly proves our claim.
The notion of convergence that is compatible with the class Bl(K,D)
is the following:
We shall say that a filter U on the set of real-valued

functions on K converges quasi-uniformly around D to the function

f if for all € > 0 and for any non-empty subset F of D, there
exists an open subset 0 of K with ONF # @ and a set A in U

such that sup 'f(X) & g(X)‘ L e.
x€ONF,g€A

We denote by osc(f|L) the oscillation of f on a subset L of
K and for each x in K we will write
osc(f)(x) = inf{osc(fIU);U open in K containing x}.

The set C(f) = {x € K;osc(f)(x) = 0} 1is then the set of points
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of continuity of f on K.

Lemma I.0: Let D be a dense subset of a Baire completely regular

topological space K. Let f be a function defined on K. The

following properties are then equivalent:

a) The set of points of continuity of f on K is a dense Gg in
Ko

b) For any relatively open set W in D and any € > 0, there

exists an open set O in K such that O N W # ¢ and

osc(£|0 N W) < e.
Proof: a) => b) is immediate. To prove b) => a), it is enough to
show — in view of the Baire category theorem - that for any non-empty
open subset U ian K and any € > 0, there exists a non-empty open
set U' c U such that osc(f|U') < €. To do that consider the

non-empty relatively open set W =UMN D in D and find an open set

0 in K with ONUND#* QP and osc(fIO nunon < €. But this

implies that osc(£/(0 N U) N D) = osc(fIO nu <e. Q.E.D.
By localizing the above argument to each subset of D we obtain

the following:

Lemma I.l: Let D be a subset of a completely regular topological
space K such that the closure of any subset of D 1is a Baire space
for the induced topology. Let f be a function defined on K. The
following properties are then equivalent:

a) f belongs to Bl(K,D).

b) For any non-empty subset F of D, the set of points of

continuity of f relative to F 1is a dense G5 in F.
The following is the analogue of Baire's characterization theorem
for functions in BI(K)' We are indebted to J. St. Raymond for

assertion (d).

Theorem 1.2: Let D be a subset of a Polish space K. Let f be a

bounded real-valued function defined on K. The following properties

are then equivalent:

a) f belongs to Bl(K,D)

b) There exists a Gg—subset G of K containing D such that f
belongs to BI(K,G) and for any x 1in G there exists (xn) in

D with 1lim X, =X and lim f(xn) = f(x).
n

n
c) For any € > 0, there exists an FO_GG subset Be of K
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containing D and a function fe in BI(K) such that
e - €| <e on B

d) There exist two functions g, and g, in Bl(K) such that
g, <f S_gl and g =8, on D.

e) There exist a sequence (fn)n of continuous functions on K

that converges quasi-uniformly around D to the function f£f.

Remark: Condition d) of the above theorem is clearly equivalent to
the following: '
d') There exists functions g and ¢ in Bl(K) such that

|f-g| S_@ on K and ¢ =0 on D.

This reformulation suggests a possible extension of the above
results to the vector-valued case. Moreover, it immediately implies
that the sum of two functions in Bl(K,D) is also in BI(K,D). See
also the proof of Lemma I.12 for another stability result (for such

functions) that is easily seen through the d') criterium.

Proof: a) => b) Let A be a complete metric that induces the
topology on K. For each € > 0, we construct by transfinite

induction a

) of subsets of D in the following manner:

€
decreasing family (Fa 5

€
i) Fg =D and if a = B+l and FB # ¢, find an open set O; in
€ € . —€ €
K such that FB n OB # ¢, Ab-diam (FB n OB) < € and

osc(f Og n Fg) < €. We then set Fe o= Fg\Og.

a
.. . L. ; € €
ii) If @ is a limit ordinal, we let F_ = [ Fg..
a B
B<a
€ —€ €
Now let Ka = Fa and note that the family of closed sets (Ka)a

is strictly decreasing whenever they are not empty. Since K is

separable, there exists Ye < 2 (the first uncountable ordinal) such

€
becomes stationary after Ye’ hence KY = . Note
€

€
that (Ka)a

€ €
that now D € N (KaU U OB) = B, ¢ K. It is clear that B_ 1is a
oY, B<a
Gg-subset of K. We shall prove that G = Bl/n verifies the
n

claimed properties in b). Let F be a non-empty subset of G and

take € > 0. Since F C Be , let GO be the first ordinal such that

F ¢ Ki . This means that F C K; for each B < a
0
FN(U Og) # @; that is, there is B < oy so that F N Og # ¢ and
B<a
0

0 and that
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Fn Og c K; n 0;, hence osc(f|F n 0;) < € and f then belongs to

Bl(K,G). Now let x 1in G. As above there exists for each € > 0
: € € X € €
an ordinal B such that x € Kg N OB' Since A-diam(KB n OB) <E

and osc(f‘KB n Og) < €, there exists x_. in F; c D such that

€
A(x,xg) < € and [£(x) = £(xg)| < e

b) => ¢) VUse the same construction as above to get B and note that

€
B. .= (Ke n Oe), hence it is also an F in K. Now let P be
€ [+1 a o a
G.SYE
a real number such that sup f(x) - Pa < &, The functioan on K

£ €
xéKanoa

] € €

Pa if x € Ka n Oa
0 if x ¢ 8

sup |£(x) - £, ()| < €.
x€B,

c) => d) Suppose m<f <M on K; let (Bn)n be a sequence of

defined by fe(x) = is in Bl(K) and

€

Gs—F, sets containing D and let (f ) be a sequence of functions

n’n
in B, (K) such that sup ‘f - £ .(x) < L. We can clearly assume
1 n - n
x€Bn
the Bn's decreasing. Now let
j [ 1

fn(x) + = if XEBn\ Bn+l fn(x) = if xEBn\ B i1
gl(x) =(M if x(B1 and gz(x) =(m if x{Bl.

f(x) if xé€n Bn f(x) if xéﬂBn

n n

It is clear that g, <f S_gl and gl(x) = gz(x) = f(x) 1if x € D.
On the other hand, g; (resp. gz) are in Bl(K) since they are the
uniform limit on K of the fuactions

1

fn(x) + = if x € Bn\Bn+1 and n < N

ghx) = (£ (x) ++ if xeB

1 N N N

M if x § By

| -
fn(x) = if x € Bn\Bn+1 and n < N
N _ 1
and gz(x) = fN(x) s if x € BN

m if x f B1
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respectively, which are clearly in BI(K)'
d) => e) Suppose g, and g, are two functions in Bl(K) such that
g) < f<g and g; =g, on D. Let (fn) be a sequence of

continuous functions on K that converge pointwise, and thus

quasi-uniformly, to g, ou K. For each € > 0, 1let 0 < €'< %

and note that the sets A, = {x;(gl—gz)(x) < €'l and

C. = {x;(gl—gz)(x) > €/2} are two disjoint Gg-subsets of K. Hence,
is

a classical separation theorem ([29] p. 485) gives that Ag,
contained in a Fo_GG set Be such that Be n Ce = @p. Let F be

any non—empty subset of D and note that Fn Be is a dense GG—F0
subset of f, hence it has a dense interior in F. That is, there
exists an open set V in K such that VN F N Be =VNF and
VNF is dense in F. Let W be an open set and let n be an

integer such that WN F # ¢ and sup _ fm(x) - gz(x) < ;u Note
m>n, x€WNF -

that WNVNF=wNVvVNFN B_ is non-empty. On the other hand,
sup If(x) - gz(x)| S.gu Hence, if we let U =W V, we get that
X€B

€

sup _Ifm(x) - f(x)l < & and (fm) converges quasi-uniformly
m>n,x €0 N F
around D to f.

e) => a) follows from the following general lemma.

Lemma I.3: Let D be a subset of a completely regular topological
space K. Let U be a filter on Bl(K,D). 1f U converges quasi-
uniformly around D to a function f, then f belongs to Bl(K,D).
Moreover, if K is a Polish space then there exists a Gg-set G
containing D such that U converges quasi-uniformly to f around

G.
Proof: Let F be a non-empty subset of D and let € > 0. There
exists A €U and an open set U such that UNF# P and

€
sup _le(x) - £(x) S-E. If g0 € A, there exists an open
g eAx elUNF

set W such that WNUNF # @ and osc(gO'U NFNW < %. Note

that UNWNF#P, UNWNFcUNFNW andosc(f'UﬂWﬂ F) < €.
Suppose that K 1is a Polish space. For each € > 0, we define

a decreasing family (Da)a of subsets of D in the following

manner:
Dg =D and if a = B+l, let Vg be an open set such that
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€
B

=

€ =€
D, # ¢ and lim supl|g(x) - £(x)|; x ¢ VB n DB} < €, Then let
geu

€, € ) . . € €
Dg\Vge If o is a limit ordinmal, let D_ = (1 D;. Now let

g''B a 8

B<a
~€

Ye < € such that D = @, We get that Dc B. = U D_N Ve. Note
Y. € ST a a

that Be is a GG set. A reasoning similar to a) => b) of Theoren

I.2 shows that for any F # ¢, F C B_, there exists B < Y such

€ € =€ €
vV, # f nv
that F 8 ¢ and F VB (& DB g’ hence

lim sup{|g(x) - £(x)|; x ¢ F V;} < &, It is now clear that the

Ga—set G=0nN B verifies the claimed properties of the lemma.
€>0

B. Spaces of continuous functions and convergence around sets:

Let Cb(K) be the space of bounded and continuous functions on
a completely regular topological space K and let D be a subset of
K. In this subsection, we shall study some properties of subsets H
of Cb(K) that are pointwise relatively compact in Bl(K,D). The
following concepts are dual to some topological notions that arise
naturally in the context of Banach space theory (see section III).
Since they can be defined in a "non-linear" context, we shall study
them in full generality.

Let H be a uniformly bounded set of functions on K. We shall
say that:

a) H 1is equicontinuous around D if for each €>0 and every

non—empty subset F of D, there exists an open set 0 such

that ON F# @ and osc(fl0N F) < € for all £ in H.
B) H 1is of small oscillation around D if for each €>0 and every

cees 0

non—-empty subset F of D, there exists open sets 0

such that 0i NF#@ for each 1 <i<n and

1’ n

n
i3 osc(f|0 NF) <€ for all £ € H.
n i=1 s -

Y) H verifies Bourgain's condition around D if for each €>0 and

every non—empty subset F of D, there exist open sets

01, i )y 0n with Oi NF#*P foreach 1<i<n and such that

inf osc(£]0. N f),S € for all f in H,
1<j<n 4
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§) H is of regular oscillation around D if the pointwise closure

H of H is contained in BI(K,D).
We shall now compare these topological notions in the case where

K 1is a Polish space.

Theorem I.4: Let D be a subset of a Polish space K and let H be
a uniformly bounded subset of Cb(K). The following conditions are
equivalent:
a) H verifies Bourgain's condition around D.
b) Every ultrafilter on H converges quasi-uniformly around D.
c) H is a set of regular oscillation around D.

In this case every sequence in H has a subsequedce that

converges quasi-uniformly around D.

Proof: a) => b) Let F be a non—-empty subset of D and let €>0.

There exists open sets 0, ..., O~ such that 0, N F#¢ and

n -
H= U {g(H; osc(glF n Oi) < €)}. If U is an ultrafilter on H,

i=1

there exists j (1 < j<n) and A € U such that

sup osc(g|F n 0,) < €. This clearly implies that U converges quasi-
geA J

uniformly around D.

b) => ¢) is immediate in view of Lemma I.3.

c) => a) Since fl 1is compact in the pointwise topology, it is enough

to show that if F is a fixed non—empty subset of D and €>0, then

any f in H has a neighborhood V such that there exist open sets

015 +es, O with 0Oy N F# ¢ with the following property:

g€U=>3j(lS_an)osc(ngﬂ?)ie.
We can clearly assume D = K. Assume the claim false for some

€ >0 and some F Cc D. Since f 1is a first class function around

= €
D there exists an open set V such that osc(f|V NF) < 5 Let
C=VNF. We can assume — up to subtracting a constant off
f

- that we have the following situation:

€

i) 'f' < g on (6]

ii) For any neighborhood V of f (for the pointwise topology) and

any open sets 0, «.s, O with 0 Nc#*¢(1<1ig<n) there
exists g in UV NH so that osc(g 0; N C) > € for each

i=1, ..., D.



