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Preface

Ever since their original discovery nearly 100 years ago, superconductors and
superfluids have led to an incredible number of unexpected and surprising new
phenomena. The theories which eventually explained superconductivity in met-
als and superfluid He count among the greatest achievements in theoretical
many-body physics, and have had profound implications in many other areas,
such as in the construction of the “Higgs mechanism” and the standard model
of particle physics. .

Even now there is no sign that the pace of progress is slowing down. Indeed
recent years have seen renewed interest in the field in following the 1986 discov-
ery of cuprate high temperature superconductivity and the 1995 announcement
of Bose-Einstein condensation (BEC) in ultra-cold atomic gases. These break-
throughs have tremendously widened the scope of the area of “low temperature
physics” from 165 K (only about —100°C, a cold day at the North Pole) the
highest confirmed superconducting transition temperature ever recorded, to
the realm of nano-Kelvin in laser trapped condensates of atomic gases. Further-
more an incredibly wide range of materials is now known to be superconducting.
The field is no longer confined to the study of the metallic elements and their
alloys, but now includes the study of complex oxides, carbon-based materials
(such as fullerene Cgp), organic conductors, rare earth based compounds (heavy
fermion materials), and materials based on sulphur and boron (MgB, supercon-
ductivity was discovered in 2001). Commercial applications of superconducting
technology are also increasing, albeit slowly. The LHC ring currently (in 2003)
being installed at the CERN particle physics center is possible only because
of considerable recent advances in superconducting magnet technology. But
even this uses *“traditional” superconducting materials. In principle, even more
powerful magnets could be built using novel high temperature superconducting
materials, although these materials are difficult to work with and there are many
technical problems still to be overcome.

The goal of this book is to provide a clear and concise first introduction
to this subject. It is primarily intended for use by final year undergraduates
and beginning postgraduates, whether in physics, chemistry, or materials sci-
ence departments. Hopefully experienced scientists and others will also find it
interesting and useful.

For the student, the concepts involved in superfluidity and superconductivity
can be difficult subject to master. It requires the use of many different elements
from thermodynamics, electromagnetism, quantum mechanics, and solid state
physics. Theories of superconductivity, such as the Bardeen Cooper Schrieffer
(BCS) theory, are also most naturally written in the mathematics of quantum
field theory, a subject which is well beyond the usunal undergraduate physics
curriculum. This book attempts to minimize the use of these advanced math-
ematical techniques so as to make the subject more accessible to beginners.



Preface

Of course, those intending to study superconductivity at a more advanced level
will need to go on to the more advanced books. But I believe most of the key
concepts are fully understandable using standard undergraduate level quan-
tum mechanics, statistical physics, and some solid state physics. Among the
other books in the Oxford Master Series in Condensed Matter, the vol-
umes Band theory and electronic properties of solids by John Singleton (2001),
and Magnetism in condensed matter by Stephen Blundell (2001) contain the
most relevant background material. This book assumes an initial knowledge
of solid state physics at this level, and builds upon this (or equivalent level)
foundation.

Of course, there are also many other books about superconductivity and
superfluids. Indeed each chapter of this book contains suggestions for further
reading and references to some of the excellent books and review articles that
have been written about superconductivity. However, unlike many of these earl-
ier books, this book is not intended to be a fully comprehensive reference, but
merely an introduction. Also, by combinining superconductivity, superfluids
and BEC within a single text, it is hoped to emphasize the many strong links and
similarities between these very different physical systems. Modern topics, such
as unconventional superconductivity, are also essential for students studying
superconductivity nowadays and are introduced in this book.

The basic framework of the earlier chapters derives from lecture courses
[ have given in Bristol and at a number of summer and winter schools elsewhere
over the past few years. The first three chapters introduce the key experimen-
tal facts and the basic theoretical framework. First, Chapter 1 introduces BEC
and its experimental realization in ultra-cold atomic gases. The next chap-
ter introduces superfluid “He and Chapter 3 discusses the basic phenomena
of superconductivity. These chapters can be understood by anyone with a
basic understanding of undergraduate solid state physics, quantum mechan-
ics, electromagnetism, and thermodynamics. Chapter 4 develops the theory of
superconductivity using the phenomenological Ginzburg-Landau theory devel-
oped by the Landau school in Moscow during the 1950s. This theory is still
very useful today, since it is mathematically elegant and can describe many
complex phenomena (such as the Abrikosov vortex lattice) within a simple
and powerful framework. The next two chapters introduce the BCS theory of
superconductivity. In order to keep the level accessible to undergraduates I
have attempted to minimize the use of the mathematical machinery of quantum
field theory, although inevitably some key concepts, such as Feynman dia-
grams, are necessary. The effort is split into two parts: Chapter 5 introducing
the language of coherent states and quantum field operators, while Chapter 6
develops the BCS theory itself. These two chapters should be self-contained
so that they are comprehensible whether or not the reader has had prior experi-
ence in quantum field theory techniques. The final chapter of the book covers
some more specialized, but still very important, topics. The fascinating proper-
ties of superfluid 3He are described in Chapter 7. This chapter also introduces
unconventional Cooper pairing and is based on a series of review articles in
which I discussed the evidence for or against unconventional pairing in the
high temperature superconductors.

For a teacher considering this book for an undergraduate or graduate level
course, it can be used in many ways depending on the appropriate level for the
students. Rather than just starting at Chapter 1 and progressing in linear fashion,



one could start at Chapter 3 to concentrate on the superconductivity parts alone.
Chapters 3-6 would provide a sound introduction to superconductivity up to
the level of the BCS theory. On the other hand, for a graduate level course one
could start with Chapters 4 or 5 to get immediately to the many-body physics
aspects. Chapter 7 could be considered to be research level or for specialists
only, but on the other hand could be read as stand-alone reference by students
or researchers wanting to get a quick background knowledge of superfluid >He
or unconventional superconductivity.

The book does not attempt to cover comprehensively all areas of modern
superconductivity. The more mathematically involved elements of BCS and
other theories have been omitted. Several more advanced and comprehensive
books exist, which have good coverage at a much more detailed level. To
really master the BCS theory fully one should first learn the full language
of many-particle quantum field theory. Topics relating to the applications of
superconductivity are also only covered briefly in this book, but again there are
more specialized books available.

Finally, I would like to dedicate this book to my friends, mentors, and col-
leagues who, over the years, have shown me how fascinating the world of
condensed matter physics can be. These include Roger Haydock, Volker Heine,
Richard Martin, Nigel Goldenfeld, Tony Leggett, Balazs Gyorffy, and many
others too numerous to mention.

James F. Annett'
University of Bristol, March 2003

Preface iii

'T will be happy to receive any comments
and corrections on this book by Email to
Jjames.annett @bristol.ac.uk

N
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Bose-Einstein
condensates

1.1 Introduction

Superconductivity, superfluidity, and Bose-Einstein condensation (BEC)
are among the most fascinating phenomena in nature. Their strange and often
surprising properties are direct consequences of quantum mechanics. This is
why they only occur at low temperatures, and it is very difficult (but hopefully
not impossible!) to find a room temperature superconductor. But, while most
other quantum effects only appear in matter on the atomic or subatomic scale,
superfluids and superconductors show the effects of quantum mechanics acting
on the bulk properties of matteron a large scale. In essence they are macroscopic
quantum phenomena.

In this book we shall discuss the three different types of macroscopic quantum
states: superconductors, superfluids, and atomic Bose-Einstein condensates.
As we shall see, these have a great deal in common with each other and can
be described by similar theoretical ideas. The key discoveries have taken place
over nearly a hundred years. Table 1.1 lists some of the key discoveries, starting
in the early years of the twentieth century and still continuing rapidly today.
The field of low temperature physics can be said to have its beginnings in
1908, where helium was first liquified at the laboratory of H. Kammerling
Onnes in Leiden, The Netherlands. Very soon afterwards, superconductivity
was discovered in the same laboratory. But the theory of superconductivity was
not fully developed for until nearly forty years later, with the advent of the

Table 1.1 Some of the key discoveries in the history of superconductivity, superfluidity, and BEC

1908 Liquefaction of *He at 4.2 K

1911 Superconductivity discovered in Hg at 4.1 K
1925 Bose-Einstein condensation (BEC) predicted
1927 X transition found in *He at 2.2 K

1933 Meissner-Ochsenfeld effect observed

1938 Demonstration of superfluidity in *He

1950 Ginzburg-Landau theory of superconductivity
1957 Bardeen Cooper Schrieffer (BCS) theory

1957 Abrikosov flux lattice

1962 Josephson effect

1963—4  Anderson—-Higgs mechanism

1971 Superfluidity found in *He at 2.8 mK

1986 High temperature superconductivity discovered, 30-165 K
1995 BEC achieved in atomic gases, 0.5 pK

1.1 Introduction

1.2 Bose-Einstein
statistics

1.3 Bose-Einstein
condensation

1.4 BEC in ultra-cold atomic
gases

Further reading
Exercises

10
17
18



2 Bose-Einstein condensates

! Some offshoots of the development of super-
conductivity have had quite unexpected con-
sequences in other fields of physics. The
Josephson effect leads to a standard relation-
ship between voltage, V, and frequency, v:
V = (h/2e)v, where h is Planck’s constant
and e is the electron charge. This provides
the most accurate known method of measur-
ing the combination of fundamental constants
h/e and is used to determine the best values of
these constants. A second surprising discov-
ery listed in Table 1.1 is the Anderson-Higgs
mechanism. Philip Anderson explained the
expulsion of magnetic flux from supercon-
ductors in terms of spontaneous breaking
of gauge symmetry. Applying essentially the
same idea to elementary particle physics Peter
Higgs was able to explain the origin of mass
of elementary particles. The search for the
related Higgs boson continues today at large
accelerators such as CERN and Fermilab.

2For some more historical details see
*“The man who chopped up light” (Home and
Griffin 1994).

Bardeen Cooper Schrieffer (BCS) theory.' In the case of BEC it was the theory
that came first, in the 1920s, while BEC was only finally realized experimentally
as recently as 1995.

Despite this long history, research in these states of matter is still develop-
ing rapidly, and has been revolutionized with new discoveries in recent years.
At one extreme we have a gradual progression to systems at lower and lower
temperatures. Atomic BEC are now produced and studied at temperatures of
nano-Kelvin. On the other hand high temperature superconductors have been
discovered, which show superconductivity at much higher temperatures than
had been previously believed possible. Currently the highest confirmed super-
conducting transition temperature, T, at room pressure is about 133 K, in the
compound HgBa;Ca;Cu3Og.s. This transition temperature can be raised to a
maximum of about 164 K when the material is subjected to high pressures of
order 30 GPa, currently the highest confirmed value of 7. for any supercon-
ducting material. Superconductivity at such high temperatures almost certainly
cannot be explained within the normal BCS theory of superconductivity, and the
search fora new theory of superconductivity which can explain these remarkable
matenials is still one of the central unsolved problems of modern physics.

This book is organized as follows. In this chapter we start with the simplest
of these three macroscopic quantum states, BEC. We shall first review the
concept of a BEC, and then see how it was finally possible to realize this state
experimentally in ultra-cold atomic gases using the modern techniques of laser
cooling and trapping of atoms. The following two chapters introduce the basic
phenomena associated with superfluidity and superconductivity. Chapters 4—-6
develop the theories of these macroscopic quantum states, leading up to the
full BCS theory. The final chapter goes into some more specialized areas:
superfluidity in He and superconductors with unconventional Cooper pairing.

1.2 Bose-Einstein statistics

In 1924 the Indian physicist S.N. Bose wrote to Einstein describing a new
method to derive the Plank black-body radiation formula. At that time Einstein
was already world-famous and had just won the Nobel prize for his quan-
tum mechanical explanation of the photoelectric effect. Bose was a relatively
unknown scientist working in Dacca (now Bangladesh), and his earlier letters
to European journals had been ignored. But Einstein was impressed by the
novel ideas in Bose’s letter, and helped him to publish the results.> The new
idea was to treat the electromagnetic waves of the black-body as a gas of iden-
tical particles. For the first time, this showed that the mysterious light quanta,
introduced by Planck in 1900 and used by Einstein in his 1905 explanation of
the photo-electric effect, could actually be thought of as particles of light, that
is, what we now call photons. Einstein soon saw that the same method could
be used not only for light, but also for an ideal gas of particles with mass. This
was the first proper quantum mechanical generalization of the standard classi-
cal theory of the ideal gas developed by Boltzmann, Maxwell, and Gibbs. We
know now that there are two distinct quantum ideal gases, corresponding to
either Bose—Einstein or Fermi—Dirac statistics. The method of counting quan-
tum states introduced by Bose and Einstein applies to beson particles, such as
photons or “He atoms.



The key idea is that for identical quantum particles, we can simply count
the number of available quantum states using combinatorics. If we have Ng
identical bose particles in M; available quantum states then there are

W, = w’ (1.1
NW(M; — 1)
available ways that the particles can be distributed. To see how this factor arises,
imagine each available quantum state as a box which can hold any number of
identical balls, as sketched in Fig. 1.1. We can count the number of arrangements
by seeing that the N, balls and the M; — 1 walls between boxes can be arranged
in any order. Basically there are a total of Ny + M, — 1 different objects arranged
in a line, N; of those are of one type (particles) while M; — 1 of them are of
another type (walls between boxes). If we had N; + M; — 1 distinguishable
objects, we could arrange them in (N; + M; — 1)! ways. But the N; particles
are indistinguishable as are the M; — 1 walls, giving a reduction by a factor
N; (M — 1)!, hence giving the total number of configurations in Eq. 1.1.
We now apply this combinatoric rule to the thermodynamics of an ideal gas of
N boson particles occupying a volume V. Using periodic boundary conditions,
any individual atom will be in a plane-wave quantum state,

| B
Y = oz, (1.2)
where the allowed wave vectors are
K — (27rnx’ ZJrny, 27rnz) , (1.3)
L, L, L,

and where Ly, Ly, and L, are the the lengths of the volume in each direction.
The total volume is V = L,L,L,, and therefore an infinitessimal volume d3k =
dkydkydk, of k-space contains

\%
&’ 14
) (1.4)
quantum states.’
Each of these single particle quantum states has energy
K2 k>
€ = ——, (1.5)
2m

where m is the particle mass. We can therefore divide up the available single
particle quantum states into a number of thin spherical shells of states, as shown
in Fig. 1.2. By Eq. 1.4 a shell of radius £, and thickness 5k, contains
4
Mg =4n kszak_\-(—zn—):;
single particle states. The number of available states between energy ¢; and
€; + b¢; is therefore

(1.6)

V32112
= Vg(es)de;, (1.7
where 3
m
gle) = mfl/z (1.8)

is the density of states per unit volume, shown in Fig. 1.3.

1.2 Bose-Einstein statistics 3

1 203 L .M,

Fig. 1.1 N; boson particles in M, available
quantum states. We can count the number
of possible configurations by considering that
the N identical particles and the M, — | walls
between boxes and can be arranged along a
line in any order. For bosons each box can
hold any number of particles,0,1,2....

Fig. 1.2 A thin shell of states of wave vector
between k; and k; + k. The shell has volume
4mk28ks and so there are dmk26k,V/(2m)}
quantum states in the shell.

3The volume Band Theorv and Electronic
Properties of Solids, by John Singleton
(2001), in this Oxford Master Series in Con-
densed Matter Physics series explains this
point more fully, especially in Appendix B.

g(e)

€

Fig. 1.3 The single particle density of states,
8(€), of a three dimensional gas of particles.



4 Bose-Einstein condensates

The fundamental principles of statistical mechanics tell us that the total
entropy of the gas is § = kpln W, where kg is Boltzmann’s constant and
W is the number of available microstates of a given total energy E. To deter-
mine W we must consider how the N atoms in the gas are distributed among the
k-space shells of states of different energies. Suppose that there are N, atoms
in shell 5. Since there are M; quantum states in this shell, then we can calculate
the total number of available quantum states for this shell using Eq. 1.1. The
total number of available microstates for the whole gas is simply the product
of the number of available states in each k-space shell,

(Ns +M; —1)!
W=|IW=|| "7 1.9
l:[ * U Ns!(M; — 1)! (12
Using Stirling’s approximation, InN! ~ NInN — N, and assuming that Nj,
M; >> 1, we have the entropy

S=kglnW =kBE[(N5+MS)ln (Ns + M) — Ny InNg — M InM].

(1.10)

In thermal equilibrium the particles will distribute themselves so that the

numbers of particles in each energy shell, N;, are chosen so as to maximize this

total entropy. This must be done varying N; in such a way as to keep constant
the total number of particles,

N=>"N, (1.11)

and the total internal energy of the gas

U=ZGSNS, (1.12)
¥

Therefore we must maximize the entropy, §, with the constraints of fixed N and
U. Using the method of Lagrange multipliers, this implies that

as au aN

— —kgB— +k

aN, kP3N, ThePLgy,
where the Lagrange multiplier constants have been defined as kg 8 and —kg Su
for reasons which will be clear below. Carrying through the differentiation

we find

=0, (1.13)

In(N; +M;) —InN; — Be; + B = 0. (1.14)

Rearranging to find N; we find the result first obtained by Bose and Einstein,
1

N; = TP — 1Ms. (1.15)

The average number of particles occupying any single quantum state is N;/M;,
and therefore the average occupation number of any given single particle states
of energy ek is given by the Bose—Einstein distribution

1

e (1.16)

Sfe(e) =

In this formula we still have not properly identified the two constants, 8 and
w, which were introduced simply as Lagrange multipliers. But we can easily



find their correct interpretation using the first law of thermodynamics for a gas
of N particles,

dU =T dS — PdV + pdN, 1.17)
where T is the temperature, P is the pressure, and u is the chemical potential.
Rearranging gives

1
dS=?(dU + PdV — pdN). (1.18)

The entropy is given by § = kg In W calculated from Eq. 1.10 with the values
of N; taken from Eq. 1.15. Fortunately the differentiation is made easy using a
shortcut from Eq. 1.13. We have

3s
as=3 - N
§

oU aN
=kBﬁZ( — U )st from Eq. 1.13,
N

N, N,
= kpgB(dU — wdN). (1.19)
Comparing with Eq. 1.18, we see that
I
= —, ‘ 1.20
B kaT (1.20)

and the constant u which we introduced above is indeed just the chemical
potential of the gas.

The method we have used above to derive the Bose—Einstein distribution
formula makes use of the thermodynamics of a gas of fixed total particle num-
ber, N, and fixed total energy U. This is the microcanonical ensemble. This
ensemble is appropriate for a system, such as a fixed total number of atoms,
such as a gas in a magnetic trap. However, often we are interested in systems
of an effectively infinite number of atoms. In this case we take the thermody-
namic limit V — oo in which the density of atoms, n = N/V, is held constant.
In this case it is usually much more convenient to use the grand canonical
ensemble, in which both the total energy and the particle number are allowed
to fluctuate. The system is supposed to be in equilibrium with an external heat
bath, maintaining a constant temperature 7, and a particle bath, maintaining
a constant chemical potential w. If the N-body quantum states of N particles
have energy E,.(N) fori = 1,2,..., then in the grand canonical ensemble each
state occurs with probability

) 1
PWG) =  exp[-BED — um)], (1.21)
where the grand partition function is defined by
2= exp [-ﬂ(E,.(N’ — ch)]. (1.22)
N.i
All thermodynamic quantities are then calculated from the grand potential
Q(T,V,u) =—kgTIh 2 (1.23)
using
dQ2 = —8dT — PdV — Ndu. (1.24)

It is quite straightforward to derive the Bose—Einstein distribution using this
framework, rather than the microcanonical method used above.*
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*For the derivation of the Bose-Einstein and
Fermi-Dirac distribution functions by this
method, see standard thermodynamics texts
listed under further reading, or Appendix C
in the volume Band Theory and Electronic
Properties of Solids (Singleton 2001).



