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Preface

The past quarter century has seen the remarkable rise of com-
binatorics as a distinctive and important area of mathematics.
Combinatorial topics have found a place in many university degree
courses, and, since the founding of the Journal of Combinatorial
Theory. in 1966, there has been a flood of publications in the
combinatorial area. Some branches of combinatorics are already well
established, with their own unified body of theory and applications:
examples are graph theory, with its topological flavour, coding theory
and design theory, with their algebraic connections, and enumeration
theory, concerned with the techniques of counting. These areas are
already supplied with many textbooks at both undergraduate and
postgraduate levels. The purpose of the present work, however, is to
advertise another area of combinatorics, where a body of theory, at
one time very scattered and ad hoc, is gradually being moulded into
an elegant unity. Without attempting to be exhaustive, the book is
intended to be a readable introduction to what is, for the author, a
fascinating subject.

The origins of the theory can perhaps be traced back to 1928, when
Sperner published a simple theorem which has had repercussions far
beyond his wildest dreams. Sperner’s theorem simply asserts that if
you want to find as many subsets of an n-element set as possible,
subject to the condition that no subset is contained in another, then
you cannot do better than to choose all the subsets of size [3n]. This
theorem has been reproved and generalized to such an extent that it
has given rise to a whole branch of the theory of partially ordered sets
(or posets) called Sperner theory. Although we shall go some way
down this path, we shall not restrict ourselves to this area. Instead,
we shall use Sperner’s theorem as a springboard and a signpost,
discovering where the ideas involved in its various proofs lead to. We
shall be led to consider the structure of the set of subsets of a finite set
viewed as a poset, its chain decompositions and its antichains, its rank
levels, and the inclusion relations between these levels. This will take
us, for example, to the famous Kruskal-Katona theorem which
answers the following question: given r subsets of S, all of size k,
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viii | Preface

what is the least possible number of sets of size kK — 1 contained in
them? The answer to this question involves a nice interplay between
two different orderings, namely the partial ordering of the subsets of
S by inclusion, and the total ordering of the subsets of § of a given
size by what we shall call the squashed ordering, which is a variation
on the more familiar lexicographic or alphabetical ordering.

~ Anyone writing a book in this area is faced right at the start by a
fundamental problem. Many results for the poset of subsets of a set
can be extended to more general posets. Sometimes one of the
available proofs for sets easily extends to more general posets;
sometimes, however, the nicest proof for sets does not generalize. So
should the results be presented in their most general form (thereby
sometimes losing out on clarity) or should they be presented for
subsets of a set (thereby losing out on generality but perhaps gaining
in clarity)? An example of this problem arises in connection with the
Kruskal-Katona theorem. Several proofs are available, but a more
difficult proof due to Clements and Lindstrom establishes the result in
the more general context of the poset of divisors of a number (or
subsets of a multiset). Since we include the Clements—Lindstrom
theorem in Chapter 9, there is strictly speaking no need to include a
separate proof of the Kruskal-Katona theorem. However. in the
simpler context of sets, the Kruskal-Katona theorem has such an
elegant theory surrounding it that it would be almost criminal to omit
the simpler case. So we present both proofs. On many other occasions
we prove results in more than one way because the different proofs
illustrate different ideas and different techniques. On the whole, I
have taken the view that I should present results in their simplest
forms, concentrating mainly on sets and multisets, Accordingly, the
reader will not find a discussion of, say, geometric lattices, although
their ‘prototype’, the poset of partitions of a set, is discussed. In a few
places we look at posets more generally; the final chapter, for
example, discusses extensions of the theorem of Dilworth concerning
chain decompositions of a general poset.

In searching out the material for this book 1 was greatly helped by
several survey articles, two of which deserve special mention: the first
is that by Greene and Kleitman (1978), and the second is the more
recent one by D. B. West (1982). As will be seen from a glance at the
extensive list of references at the end of the book, a number of more
recent results have been included. Inevitably some of the results
presented here will have been improved upon by the time this book
appears in print, but in a sense this does not matter for the aim of the
book is not to provide an exhaustive survey but to present some of
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the ideas and techniques which go to make up the subject. Inevitably,
also, my choice of material will not meet with the approval of all, but
a number of interesting results not i1, the text have been included in
the exercises at the end of each chapter with hints or outlines of their
solutions at the end of the book.
: A number of people have helped and encouraged me in the writing
“of this book. In particular, I gladly acknowledge the helpful com-
ments of Professor George Clements and Dr Hazel Perfect. I should
also like to thank the Oxford University Press for encouraging me to
write, and the University of Glasgow for granting me a period of
study leave during which the final compilation of the book was
accomplished.

Glasgow ILA.
December 1985 :



Some notation used in the text

-

n
()
A
ARy
Vo
Cst
oA
(k)S
N;
<s
F(n)
A(P)
%)
t(m)
d.(P)

binomial coefficient (n-choose-r)

the shadow of &

the shadow of « at level k

the shade of &

the compression of &

the set of complements of members of &
the set of k-subsets of §

the number of members of rank i
the squashed ordering

the first n k-sets (or k-vectors)

the set of antichains of the poset P
the empty set '

the number of divisors of m

the size of the largest k-union in P
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1 Introduction and Sperner’s
theorem

1.1 A simple intersection result

The main theme of this book is the study of collections &/ of subsets
of a finite set §, where # is described in terms of intersection, union,
or inclusion conditions. An amazing richness and variety of results
will be discovered, developed, and extended in various directions.
Although our main initial theme will be a study of a theorem of
Sperner which could be said to be the inspiration of all that follows,
“we get into training by first of all asking what must surely be one of
the simplest questions possible.

Problem Let o be a collection of subsets of an n-element set S (or
an n-set §) such that A, N A, # @ for each pair i, j. How big can ||
be? The answer, and more besides, is given by the following theorem.

Theorem 1.1.1 If & is a collection of distinct subsets of the n-set S
such that A,N A, # for all A, A; € o, then || <2""'. Further, if
|| <2, o can be extended to a collection of 2"' subsets also
satisfying the given intersection property.

Proof If A € o then the complement A'=§ — A is certainly not in
o, since AN A" = . So we immediately obtain || <412" =2""'. This
bound cannot be improved upon since the collection of all subsets of
{1,...,n} containing 1 satisfies the intersection condition and has
2"~! members.

Now suppose |#f| <2""*. Then there must be a subset A with A ¢ o/
and also A’ ¢ {. We can then add A to the collection & unless there
exists B € o such that AN B =. But then B < A’ and so we could
add A’ to of. If the resulting collection has fewer than 2"~' members,
repeat the process. a

This example pinpoints some key questions. Given a property
involving union, intersection, and inclusion, how large can a collec-
" tion &f of subsets of § be if & satisfies the property? Can we

1



- 2 | Combinatorics of finite sets

characterize those collections which maximize |/|? These are the sort
of questions which we shall study.

1.2 Sperner's theorem

We now consider the property: if A, A;e o, then A, ¢A,. A
collection of subsets of S with this property is called a collection of
incomparable sets, or an antichain, or sometimes a clutter. It is an
antichain in the sense that its property is the other extreme from that
of a chain in which every pair of sets'is comparable.

Theorem 1.2.1 (Sperner 1928) Let & be an antichain of subsets of
an n-set S. Then i
Liis ([n/zl)'

This result is clearly best possible since the subsets of size [n/2]
form an antichain. The original proof given by Sperner will be
analysed in Chapter 2, but we start here by giving a simple elegant
proof due to Lubell which is pregnant with generalizations and
extensions. Altogether we shall give three different proofs, not just
because they exist, but because each in its own way presents us with
ideas which can be developed to suit a wider range of ordered
structures.

Proof of Theorem 1.2.1 (Lubell 1966) First of all note that there are
n! permutations of the elements of S. We shall say that a peninutation
7 of the elements of S begins with A if the first |[A| members of 7 are
the elements of 4 in some order. Now the number of permutations
beginning with A must be [A|!/(n —|A[)!. Also, no permutation can
begin with two different sets in &/, since one of these sets would
contain the other; therefore permutations beginning with different
sets in & are distinct. Thus
> Al - |A])! < n!

Aesd

If we let p, denote the number of members of & of size k, we have

> kli(n—k)pi<n!
k

SL<y, (L)

“ ()

whence .
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Thus

#| =2 pe= ( /2])%

gy

O

Note that Lubell’s proof actually gives a stronger result than
‘Sperner’s theorem. The inequality (1.1) is called a LYM inequality
after Lubell, Yamamoto (1954), and Meschalkin (1963), whose work
includes similar results. Instead of giving an upper bound for
YxPi, the inequality gives an upper bound for the weighted sum

Lepx / (:) Note that p, / (:) is the proportion of all those subsets

of S of size k which are in &/; the LYM inequality asserts that the sum

of these proportions is at most unity. The special case where p, =1 if

k =[n/2], px = 0 otherwise, shows that the bound can be attained.
We have thus shown that the maximum size of an antichain of

subsets of an n-set § is ([n'/lZ])' Can we identify all the antichains
which are as big as this? The first inequality in (1.2) shows that we can
attain the bound ([n72]) only if p, =0 whenever (:)<([n72])

Therefore, if n is even, there is only one maximum-sized antichain,
namely the collection of all n/2-subsets. If n is odd, all sets in a
maximume-sized antichain must be of size 3(n — 1) or i(n + 1). We now
show that there can in fact be no mixture of sizes; a maximum-sized
antichain consists either of all subsets of size 4(n — 1) or of all subsets
of size 3(n + 1).

Theorem 1.2.2 If n is even, the only antichain consisting of
([n’/z?.]) subsets of the n-set S is made up of all the n/2-subsets of . If
n is odd, an antichain of size ([n'/IZ]) consists of either alk the
i(n — 1)-subsets or all the #(n + 1)-subsets,

Proof (Lovédsz 1979) The case of even n has been dealt with.
Suppose now that n=2m +1 and that o/ is an antichain of size .

(;) Note that in Lubell’s proof the only way of finishing up with
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equality in (1.2) is to have equality at each stage. so in particular
every permutation must contribute a member of & with which it
begins.

Now & must consist only of sets of size m or m + 1. Suppose that
X, Y are subsets of size m, m + 1 respectively and that X c Y. If
X={xy,...,x,} and Y= {x,,..., x,,. 1, then since any per-
mutation beginning with x,, .. ., x, ., must begin with a member of
oA, X or Y must be in /.

Our aim is to prove that & consists of all m-sets or all (m + 1)-sets.
Suppose that & contains some but not all of the (m + 1)-sets. Then
we can find sets E, F such that |E|=|F|=m+1, Ee s, F ¢ 4 By
relabelling the elements of § if necessary we can suppose that

E={xy,.:.,%,}and F={x,, .. ,ux,, } for some i. Since E € ¢
and F ¢ o there must be a largest integer j </ with {x,, . . . x }€
A, Then E*={x;,.... Nani oo and F* = 4% 000« oo s Ximriasilsd.

We now have an impossible situation. Since E' N F*c E*' where
E* e s, we must have E* N F*¢ . However. E*NF*c F* where
|[E* N F*|=m and |F*| =m + 1, so by an earlier part of the proof one
of E*N F* and F* must be in .. This contradiction shows that our

- assumption must have been false and so .« indeed consists only of sets

all of the same size. 0

1.3 A theorem of Bollobéas

As another example of how the permutation approach of Lubell’s
proof can be used to obtain elegant proofs of results obtaincd
originally by more complicated arguments, we now give a generaliza- -
tion of Sperner’s iheorem due to Bollobds (1965). The result was also
independently proved by Katona (1974), Tarjan (1975). and Griggs.
Stahl, and Trotter (1984). This repeated discovery of results by
authors working independently is a frequent occurrence in this area of
mathematics!

Theorem 1.3.1 (Bollobas 1965) let A,,... ,A,, B,,....B, be
subsets of an n-set § such that A, N B, = if and only if i =j. Let
a,=|A,| and b, = |B,|. Then

Z——l—s'l.
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Proof Consider each ot the n! permutations of the elements of S,
and say that a permutation m contains A followed by B if all the
elements of A occur in & before all the elements of B. If a particular
permutation 7 contains A; followed by B, and also contains A,
followed by B;, then A,NB, = (if A, ends before B; begins) or
A;N B, = (if A; ends after B, begins), and either of these contradicts
the hypotheses. So, for each permutation 7, there is at most one i for
which 7 contains A, followed by B,. However, given i, the number of
permutations containing A, followed by B, can be found as follows.
Choose the a, + b, positions to be filled by the elements of A, and B;;

this can be done in ( ) ways. Then place the a, members of A, in

n
a, + b,
some order in the first a, of the chosen positions and then the b,
members of B; in some order in the remaining b, positions; this can all
be done in a/!b,! ways. Finally order the remaining n —a, — b,
elements of § and place then in the remaining places of the
permutation; this can be done in (n — g, — b,)! ways. Thus the number
of permutations 7 containing A, followed by B, is

n n!
b,¥(n — a, - b,)! = ——
(a,-i-b,)u' o ) (a‘+b,)
a;
Summing over all { we now obtain
3 n! L
, (a, +by
B
as required. ]

MNote that Sperner’s theorem follows on taking B, = A/, the comple-
ment of A,, for the condition A, N B, = J becomes A, N A =, the
condition A,N B, #J becomes A, NA #, i.e. A, ¢ A, and the
conclusion yields

SLL-y
k (n) i
k
Theorem 1.3.1 has been generalized in a number of ways. Frankl

(1982) and Kalai (1984) weakened the condition to A, N A, # for
I<i<j=m and obtained the same conclusion. Lovasz (1977)

1

1S

i




6 | Combinatorics of finite sets

generalized the theorem to subspaces of a linear space. As a recent
application, we now apply Theorem 1.3.1 to the following generaliza-
tion of the Sperner situation. Suppose we are given m chains of
subsets of an n-set § which are incomparable in the sense that no
member of one chain is contained in a member of any other chain.
How large can m be? In the case where all the chains have k + 1
members, let f(n, k) denote the largest possible value of m. Then
Sperner’s theorem corresponds to the case kK =0 and asserts that

Hn 0= ([ /2])

Theorem 1.3.2 (Griggs er al. 1984) Let f(n, k) denote the largest
value of m for which it is possible to find m chains of k + 1 distinct
subsets of an n-set § such that no member of any chain is a subset of a
member of any other chain. Then

finak) 5 ([(n _kl;/Z])

Proof Suppose that we have m chains
AiocA;)c...cA;,, (i=1,...,m)

satisfying the conditions of the theorem. In Theorem 1.3.1 take
A;=A,, and B.=5—A,,. Then a,=|A,,| and b,=n—|A,,|. Tt is
clear that |A, .| =a, + k, so b,<n — k — a,; thus

(a,+b,) (n-—k) ( n—k )

< < y

\.a, /. a, [(n — k)/2]

Now we certainly have A, N B, =@J. Also, if we had A, N B, =& for
some { #j we would then have A, ,c A, ,, contradicting the hypoth-

eses. So the sets A, and B, satisfy the conditions of Theorem 1.3 1.
and we have

? 3 i ([(n —~ k’;IZ])/ (a' : bi) 5 ([(nn——kﬁlzl-) :
Thus

J@. &)= ([( —kl;/Z])

To complete the proof we exhibit( chains with the

n—k )
[(n —Kk)/2]
required properties. Consider the [(n —k)/2]-subsets X of
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n—k
[(n = k)/2]

{k+1,...,n}. There are ( ) such subsets. For each

such X take the chain

XcXu{l}cXU{l,2}c...cXU{,2,...,k}.
These chains have the required properties. 0

Further generalizations of Sperner’s theorem will be discussed
later, particularly in Chapter 8 and in the study of the Littlewood-
Offord problem in Chapter 11.

Exercises 1

1.1 Prove thatif A,, ... . A,, are distinct subsets of an n-set § such
that for each pair i, j, A, UA;# 8§ then m <2"7".

1.2 Can we have equality in Theorem 1.1.1 without all the A,
having a common element?

1.3 Show that if & is an antichain of subsets of an n-set with

|A| < h =<!nforall A€, then |d|= (Z)

1.4 How many antichains of subsets of § are there if (a) || =2,
(b) |S|=3? (This will be followed up in Chapter 3.)

1.5 Show that the number of pairs X, Y of distinct subsets of an
n-set S with X c Y is 3" —2".

1.6 A collection & of subsets of an n-set § is called a cross-cut if
every subset of § is comparable with (i.e. contains or is
contained in) at least one member of 2. Suppose that & is a
minimal cross-cut (i.e. 9B is a cross-cut but no proper subset of

. n
B is a cross-cut). Show that |8B| < ( )
) | [n/2]
1.7 Letx,, ...,x,be real numbers, |x,| = 1 for each i, and let I be
~any unit interval on the real line. Show that the number of
linear combinations Y/, £.x, with & =0 or 1 lying inside [ is at
most ([n’;Z])' (Hint: associate with each sum the corresponding
set of indices ¢ for which ¢, =1.) (Erdos 1945)

1.8 LletA,,...,A,, B, ... ,B,besubsets of an n-set S such that



