Nicolas Guelfi
Anthony Savidis (Eds.)

Rapid Integration f
of Software Engineering
Techniques

Second International Workshop, RISE 2005
Heraklion, Crete, Greece, September 2005
Revised Selected Papers

LNCS 3943

@ Springer

Nicolas Guelfi Anthony Savidis (Eds.)

Rapid Integration
of Software Engineering
Techniques

Second International Workshop, RISE 2005
Heraklion, Crete, Greece, September 8-9, 2005
Revised Selected Papers

@ Springer

Volume Editors

Nicolas Guelfi

University of Luxembourg

Faculty of Science, Technology and Communication
1359 Luxembourg, Luxembourg

E-mail: nicolas.guelfi @uni.lu

Anthony Savidis

Foundation for Research and Technology - Hellas (FORTH)
Institute of Computer Science

GR-70013 Heraklion, Crete, Greece

E-mail: as@ics.forth.gr

Library of Congress Control Number: 2006925116

CR Subject Classification (1998): D.2, F.3, K.6.1, K.6.3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-34063-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34063-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11751113 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3943

RISE 2005 (http://rise2005.ics.forth.gr/) was the second annual inter-national
workshop of the ERCIM (European Research Consortium for Informatics and
Mathematics - http://www.ercim.org/) Working Group on Rapid Integration of
Software Engineering techniques (RISE - http://rise.uni.lu/). RISE is an international
forum for researchers and practitioners interested in the advancement and rapid
application of novel, integrated, or practical software engineering approaches being
part of a methodological framework, which apply to the development of new or
evolving applications and systems. RISE provides an opportunity to present and
discuss the latest research results and ideas in the rapid and effective integration of
software engineering techniques. Target application domains of interest to RISE

Preface

include:

In particular, RISE 2005 focused on an open and inclusive set of key software
engineering domains, which formed the focal point of the workshop, including, but

Web-based software systems

Mobile communication systems
High-availability or mission-critical systems
Resilient business and grid applications
Ambient intelligence environments
Embedded systems and applications

User interface development

Development environments

Electronic entertainment

Enterprise computing and applications

not limited to:

Software and system architectures
Software reuse

Software testing

Software model checking

Model-driven design and testing techniques
Model transformation

Requirements engineering

Lightweight or practice-oriented formal methods
Software processes and software metrics
Automated software engineering

Design patterns

Design by contract

Defensive programming

Software entropy and software re-factoring

VI Preface

Extreme programming

Agile software development

Programming languages

Software dependability and trustworthiness

This second RISE workshop was, like RISE 2004, very successful and fruitful, almost
doubling the number of submissions and of accepted papers, and leading to a high-
quality two-day technical programme. Overall, RISE 2005 accomplished its objective
to move a step forward in setting the ground towards a targeted, prestigious and open
inter-national forum of high-quality research and development results in the arena of
rapid integration of software engineering techniques.

All papers submitted to this workshop were peer reviewed by at least two members
of the International Programme Committee. Acceptance was based primarily on
originality and scientific contribution. Out of the 43 submissions received, 19 were
selected for inclusion in the workshop technical programme. Six chaired thematic
sessions were organized over a single workshop track, covering many aspects of the
integration of complementary mature software engineering techniques. This year, the
submissions addressed areas such as modelling safety case evolution, practical
approaches in model mapping, context-aware service composition, techniques for
representing product line core assets for automation, formal development of reactive
fault-tolerant systems, stepwise feature introduction in practice, programming
languages, aspects and contracts. The technical discussions that followed the paper
presentations were tape recorded, and the transcripts can be found on the RISE 2005
website (http://rise2005.ics.forth.gr/).

The keynote speech was delivered by Bertrand Meyer, Chair of Software
Engineering at ETH Zurich, Founder and Chief Architect of Eiffel Software in
California, and inventor of the Design by Contract™ method. His inspiring talk as
well as active participation during the discussion sessions contributed to the overall
success of the workshop.

The editors wish to thank the keynote speaker and the authors for their valuable
contribution in making RISE 2005 a truly outstanding event of high-quality contribut-
ions, as well as all the Programme Committee members who actively participated in
the review process in a timely and quality fashion. Finally, we are thankful to
Springer LNCS for publishing the RISE 2005 proceedings under this volume (the
RISE 2004 post-proceedings are published as Springer LNCS Vol. 3475).

September 2005 Nicolas Guelfi
Anthony Savidis

Organization

RISE 2005 was organized by the Institute of Computer Science (ICS), Foundation for
Research and Technology Hellas (FORTH).

Programme Chairs

Anthony Savidis ICS-FORTH - Programme and Organization Chair
Nicolas Guelfi FNR, Univ. Luxembourg - General Workshop Chair

International Programme Committee

Arve Aagesen Finn NTNU, Norway

Avgeriou Paris Fraunhofer IPSI Concert, Germany

Bertolino Antonia CNR-ISTI, Italy

Bicarregui Juan CCLRC, UK

Bolognesi Tommaso CNR-ISTI, Italy

Born Marc Fraunhofer FOKUS, Germany
University of Geneva, Switzerland

Carrez Cyril NTNU, Norway

Dony Christophe LIRMM, France

Fitzgerald John DCS, Newcastle, UK

Greenough Chris CCLRC-CSE CG, UK

Guelfi Nicolas FNR, Luxembourg

Haajanen Jyrki VTT, Finland

Issarny Valérie INRIA, France

Klint Paul CWI, The Netherlands

Mistrik Ivan Fraunhofer IPSI IM, Germany

Mens Tom FWO-Mons-Hainaut University TM, Belgium

Moeller Eckhard Fraunhofer FOKUS, Germany

Monostori Laszlo SZTAKI, Hungary

Pimentel Ernesto SpaRCIM, Spain

Reggio Gianna DISI, Genoa, Italy

Romanovsky Alexander DCS, Newcastle, UK

Rosener Vincent FNR, Luxembourg

Savidis Anthony CS-FORTH, Greece

Schieferdecker Ina Fraunhofer FOKUS, Germany

VIII Organization

Local Organization

Maria Papadopoulou ICS-FORTH
George Paparoulis ICS-FORTH
Maria Bouhli ICS-FORTH
Yannis Georgalis ICS-FORTH

Sponsoring Institutions

E‘mmc«m = i
for Informatics and Mathematics =
% E R C I M l.l fonds national de la

Softwarehgineeri ;ﬁ:mper ncalentet

FORTH

This workshop was supported by ERCIM and by the ERCIM Working Group (WG) on
Rapid Integration of Software Engineering Techniques (RISE).

Lecture Notes in Computer Science

For information about Vols. 1-3882

please contact your bookseller or Springer

Vol. 3987: M. Hazas, J. Krumm, T. Strang (Eds.),
Location- and Context-Awareness. X, 289 pages. 2006.

Vol. 3984: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part V. XXV, 1045 pages. 2006.

Vol. 3983: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part IV. XX VI, 1191 pages. 2006.

Vol. 3982: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part ITI. XXV, 1243 pages. 2006.

Vol. 3981: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part II. XX VI, 1255 pages. 2006.

Vol. 3980: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part I. LXXV, 1199 pages. 2006.

Vol. 3979: T.S. Huang, N. Sebe, M.S. Lew, V. Pavlovié, T.
Kolsch, A. Galata, B. Kisaganin (Eds.), Computer Vision
in Human-Computer Interaction. XII, 121 pages. 2006.

Vol. 3978: B. Hnich, M. Carlsson, F. Fages, F. Rossi (Eds.),
Recent Advances in Constraints. VIII, 179 pages. 2006.
(Sublibrary LNAI).

Vol. 3970: T. Braun, G. Carle, S. Fahmy, Y. Kocheryavy
(Eds.), Wired/Wireless Internet Communications. XIV,
350 pages. 2006.

Vol. 3968: K.P. Fishkin, B. Schiele, P. Nixon, A. Quigley
(Eds.), Pervasive Computing. XV, 402 pages. 2006.

Vol. 3967: D. Grigoriev (Ed.), Computer Science - Theory
and Applications. XVI, 684 pages. 2006.

Vol. 3964: M. U. Uyar, A.Y. Duale, M.A. Fecko (Eds.),
Testing of Communicating Systems. X1, 373 pages. 2006.

Vol. 3960: R. Vieira, P. Quaresma, M.d.G.V. Nunes, N.J.
Mamede, C. Oliveira, M.C. Dias (Eds.), Computational
Processing of the Portuguese Language. XII, 274 pages.
2006. (Sublibrary LNAI).

Vol. 3959:J.-Y. Cai, S. B. Cooper, A. Li (Eds.), Theory and

Applications of Models of Computation. XV, 794 pages.
2006.

Vol. 3958: M. Yung, Y. Dodis, A. Kiayias, T. Malkin (Eds.),
Public Key Cryptography - PKC 2006. XIV, 543 pages.
2006.

Vol. 3956: G. Barthe, B. Gregoire, M. Huisman, J.-L.
Lanet (Eds.), Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices. IX, 175 pages. 2006.

Vol. 3955: G. Antoniou, G. Potamias, C. Spyropoulos,
D. Plexousakis (Eds.), Advances in Artificial Intelligence.
XVII, 611 pages. 2006. (Sublibrary LNAI).

Vol. 3954: A. Leonardis, H. Bischof, A. Pinz (Eds.), Com-
puter Vision — ECCV 2006, Part IV. XVII, 613 pages.
2006.

Vol. 3953: A. Leonardis, H. Bischof, A. Pinz (Eds.), Com-
puter Vision — ECCV 2006, Part III. XVII, 649 pages.
2006.

Vol. 3952: A. Leonardis, H. Bischof, A. Pinz (Eds.), Com-
puter Vision —ECCV 2006, Part II. X VII, 661 pages. 2006.

Vol. 3951: A. Leonardis, H. Bischof, A. Pinz (Eds.), Com-
puter Vision — ECCV 2006, Part I. XXXV, 639 pages.
2006.

Vol. 3950: J.P. Miiller, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VI. X VI, 249 pages. 2006.

Vol. 3947: Y.-C. Chung, J.E. Moreira (Eds.), Advances in
Grid and Pervasive Computing. XXI, 667 pages. 2006.

Vol. 3946: T.R. Roth-Berghofer, S. Schulz, D.B. Leake
(Eds.), Modeling and Retrieval of Context. X1, 149 pages.
2006. (Sublibrary LNAI).

Vol. 3945: M. Hagiya, P. Wadler (Eds.), Functional and
Logic Programming. X, 295 pages. 2006.

Vol. 3944: J. Quifionero-Candela, I. Dagan, B. Magnini, F.
d’ Alché-Buc (Eds.), Machine Learning Challenges. XIII,
462 pages. 2006. (Sublibrary LNAI).

Vol. 3943: N. Guelfi, A. Savidis (Eds.), Rapid Integration
of Software Engineering Techniques. X, 289 pages. 2006.

Vol. 3942: Z. Pan, R. Aylett, H. Diener, X. Jin, S. Go-
bel, L. Li (Eds.), Technologies for E-Learning and Digital
Entertainment. XXV, 1396 pages. 2006.

Vol. 3939: C. Priami, L. Cardelli, S. Emmott (Eds.), Trans-
actions on Computational Systems Biology IV. VII, 141
pages. 2006. (Sublibrary LNBI).

Vol. 3936: M. Lalmas, A. MacFarlane, S. Riiger, A.
Tombros, T. Tsikrika, A. Yavlinsky (Eds.), Advances in
Information Retrieval. XIX, 584 pages. 2006.

Vol. 3935: D. Won, S. Kim (Eds.), Information Security
and Cryptology - ICISC 2005. XIV, 458 pages. 2006.

Vol. 3934: J.A. Clark, R.F. Paige, FA. C. Polack, PJ.
Brooke (Eds.), Security in Pervasive Computing. X, 243
pages. 2006.

Vol. 3933: F. Bonchi, J.-F. Boulicaut (Eds.), Knowledge
Discovery in Inductive Databases. VIII, 251 pages. 2006.

Vol. 3931: B. Apolloni, M. Marinaro, G. Nicosia, R. Tagli-
aferri (Eds.), Neural Nets. XIII, 370 pages. 2006.
Vol. 3930: D.S. Yeung, Z.-Q. Liu, X.-Z. Wang, H. Yan

(Eds.), Advances in Machine Learning and Cybernetics.
XXI, 1110 pages. 2006. (Sublibrary LNAI).

Vol. 3929: W. MacCaull, M. Winter, 1. Diintsch (Eds.),
Relational Methods in Computer Science. VIII, 263 pages.
2006.

Vol. 3928: J. Domingo-Ferrer, J. Posegga, D. Schreckling
(Eds.), Smart Card Research and Advanced Applications.
XI, 359 pages. 2006.

Vol. 3927: J. Hespanha, A. Tiwari (Eds.), Hybrid Systems:
Computation and Control. XII, 584 pages. 2006.

Vol. 3925: A. Valmari (Ed.), Model Checking Software.
X, 307 pages. 2006.

Vol. 3924: P. Sestoft (Ed.), Programming Languages and
Systems. XII, 343 pages. 2006.

Vol. 3923: A. Mycroft, A. Zeller (Eds.), Compiler Con-
struction. XIII, 277 pages. 2006.

Vol. 3922: L. Baresi, R. Heckel (Eds.), Fundamental Ap-
proaches to Software Engineering. XIII, 427 pages. 2006.

Vol. 3921: L. Aceto, A. Ing6Ifsdéttir (Eds.), Foundations
of Software Science and Computation Structures. XV, 447
pages. 2006.

Vol. 3920: H. Hermanns, J. Palsberg (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems.
XIV, 506 pages. 2006.

Vol. 3918: WK. Ng, M. Kitsuregawa, J. Li, K. Chang
(Eds.), Advances in Knowledge Discovery and Data Min-
ing. XXIV, 879 pages. 2006. (Sublibrary LNAI).

Vol. 3917: H. Chen, EY. Wang, C.C. Yang, D. Zeng, M.
Chau, K. Chang (Eds.), Intelligence and Security Infor-
matics. XII, 186 pages. 2006.

Vol. 3916: J. Li, Q. Yang, A.-H. Tan (Eds.), Data Min-
ing for Biomedical Applications. VIII, 155 pages. 2006.
(Sublibrary LNBI).

Vol. 3915: R. Nayak, M.J. Zaki (Eds.), Knowledge Dis-
covery from XML Documents. VIII, 105 pages. 2006.

Vol. 3914: A. Garcia, R. Choren, C. Lucena, P. Giorgini,
T. Holvoet, A. Romanovsky (Eds.), Software Engineering
for Multi-Agent Systems IV. XIV, 255 pages. 2006.

Vol. 3910: S.A. Brueckner, G.D.M. Serugendo, D. Hales,
F. Zambonelli (Eds.), Engineering Self-Organising Sys-
tems. XII, 245 pages. 2006. (Sublibrary LNAI).

Vol. 3909: A. Apostolico, C. Guerra, S. Istrail, P. Pevzner,
M. Waterman (Eds.), Research in Computational Molec-
ular Biology. XVII, 612 pages. 2006. (Sublibrary LNBI).

Vol. 3908: A. Bui, M. Bui, T. Béhme, H. Unger (Eds.),
Innovative Internet Community Systems. VIII, 207 pages.
2006.

Vol. 3907: F. Rothlauf, J. Branke, S. Cagnoni, E. Costa, C.
Cotta, R. Drechsler, E. Lutton, P. Machado, J.H. Moore, J.
Romero, G.D. Smith, G. Squillero, H. Takagi (Eds.), Ap-
plications of Evolutionary Computing. XXIV, 813 pages.
2006.

Vol. 3906: J. Gottlieb, G.R. Raidl (Eds.), Evolutionary
Computation in Combinatorial Optimization. XI, 293
pages. 2006.

Vol. 3905: P. Collet, M. Tomassini, M. Ebner, S.
Gustafson, A. Ekart (Eds.), Genetic Programming. X1, 361
pages. 2006.

Vol. 3904: M. Baldoni, U. Endriss, A. Omicini, P. Tor-
roni (Eds.), Declarative Agent Languages and Technolo-
gies III. XII, 245 pages. 2006. (Sublibrary LNAI).

Vol. 3903: K. Chen, R. Deng, X. Lai, J. Zhou (Eds.), Infor-
mation Security Practice and Experience. XIV, 392 pages.
2006.

Vol. 3902: R. Kronland-Martinet, T. Voinier, S. Ystad
(Eds.), Computer Music Modeling and Retrival. X1, 275
pages. 2006. -

Vol. 3901: PM. Hill (Ed.), Logic Based Program Synthesis
and Transformation. X, 179 pages. 2006.

Vol. 3900: F. Toni, P. Torroni (Eds.), Computational Logic
in Multi-Agent Systems. XVII, 427 pages. 2006. (Subli-
brary LNAI).

Vol. 3899: S. Frintrop, VOCUS: A Visual Attention System
for Object Detection and Goal-Directed Search. XIV, 216
pages. 2006. (Sublibrary LNAI).

Vol. 3898: K. Tuyls, P.J. 't Hoen, K. Verbeeck, S. Sen
(Eds.), Learning and Adaption in Multi-Agent Systems.
X, 217 pages. 2006. (Sublibrary LNAI).

Vol. 3897: B. Preneel, S. Tavares (Eds.), Selected Areas in
Cryptography. XI, 371 pages. 2006.

Vol. 3896: Y. Ioannidis, M.H. Scholl, J.W. Schmidt, F.
Matthes, M. Hatzopoulos, K. Boehm, A. Kemper, T. Grust,
C. Boehm (Eds.), Advances in Database Technology -
EDBT 2006. XIV, 1208 pages. 2006.

Vol. 3895: O. Goldreich, A.L. Rosenberg, A.L. Selman
(Eds.), Theoretical Computer Science. XII, 399 pages.
2006.

Vol. 3894: W. Grass, B. Sick, K. Waldschmidt (Eds.), Ar-
chitecture of Computing Systems - ARCS 2006. XII, 496
pages. 2006.

Vol. 3893: L. Atzori, D.D. Giusto, R. Leonardi, F. Pereira
(Eds.), Visual Content Processing and Representation. IX,
224 pages. 2006.

Vol. 3892: A. Carbone, N.A. Pierce (Eds.), DNA Comput-
ing. XI, 440 pages. 2006.

Vol. 3891: 1.S. Sichman, L. Antunes (Eds.), Multi-Agent-
Based Simulation VI. X, 191 pages. 2006. (Sublibrary
LNAI).

Vol. 3890: S.G. Thompson, R. Ghanea-Hercock (Eds.),
Defence Applications of Multi-Agent Systems. XII, 141
pages. 2006. (Sublibrary LNAI).

Vol. 3889:J. Rosca, D. Erdogmus, J.C. Principe, S. Haykin
(Eds.), Independent Component Analysis and Blind Sig-
nal Separation. XXI, 980 pages. 2006.

Vol. 3888: D. Draheim, G. Weber (Eds.), Trends in Enter-
prise Application Architecture. IX, 145 pages. 2006.

Vol. 3887: J.R. Correa, A. Hevia, M. Kiwi (Eds.), LATIN
2006: Theoretical Informatics. XVI, 814 pages. 2006.

Vol. 3886: E.G. Bremer, J. Hakenberg, E.-H.(S.) Han,
D. Berrar, W. Dubitzky (Eds.), Knowledge Discovery in
Life Science Literature. XIV, 147 pages. 2006. (Sublibrary
LNBI).

Vol. 3885: V. Torra, Y. Narukawa, A. Valls, J. Domingo-
Ferrer (Eds.), Modeling Decisions for Artificial Intelli-
gence. XII, 374 pages. 2006. (Sublibrary LNAI).

Vol. 3884: B. Durand, W. Thomas (Eds.), STACS 2006.
X1V, 714 pages. 2006.

Vol. 3883: M. Cesana, L. Fratta (Eds.), Wireless Systems
and Network Architectures in Next Generation Internet.
IX, 281 pages. 2006.

Table of Contents

Doing More with Contracts: Towards Automatic Tests and Proofs
(Invited Keynote Speech (Abstract))
Bertrand Meyer e

Using Stepwise Feature Introduction in Practice: An Experience Report
Ralph-Johan Back, Johannes Eriksson, Luka Milovanov

Rapid System Development via Product Line Architecture
Implementation

Mauro Caporuscio, Henry Muccini, Patrizio Pelliccione,

E2i0 Di NISIO o oo oot e e e e e e

User Centred Rapid Application Development
Edward Lank, Ken Withee, Lisa Schile, Tom Parker

Software Testing with Evolutionary Strategies
Enrique Alba, J. Francisco Chicanoc.c.ccuiiuuiinn..

A Technique to Represent Product Line Core Assets in MDA /PIM
for Automation
Hyun Gi Min, Soo Dong Kimco i,

Modeling Safety Case Evolution — Examples from the Air Traffic
Management Domain
Massimng Felich . : cooviimsas smoas snsso susgass inais imsns dassen

Type-Driven Automatic Quotation of Concrete Object Code in Meta
Programs
Jurgen J. Vingu.o

Dynamic Imperative Languages for Runtime Extensible Semantics and
Polymorphic Meta-programming
Anthory Savidis « s sosws swins ss s smme sosws sosme smzes paims i

Context-Aware Service Composition in Pervasive Computing
Environments
Sonia Ben Mokhtar, Damien Fournier, Nikolaos Georgantas,
Valérie IsSarnyo e

Can Aspects Implement Contracts?
Stephanie Balzer, Patrick Th. Eugster, Bertrand Meyer

X Table of Contents

Aspects-Classes Integration Testing Strategy: An Incremental Approach
Philippe Massicotte, Linda Badri, Mourad Badri 158

Prototyping Domain Specific Languages with COOPN
Luis Pedro, Levi Lucio, Didier Buchs.coiiuien... 174

An Improved Case-Based Approach to LTL Model Checking
Fei Pu, Wenhui Zhang, Shaochun Wang 190

Synthesized UML, a Practical Approach to Map UML to VHDL
Medard Rieder, Rico Steiner, Cathy Berthouzoz, Francois Corthay,
Thomas SEeTTENot e ettt 203

Towards Service-Based Business Process Modeling, Prototyping and
Integration

Ang Chen; Didier Buchs . .cssz:nminensssinnissnssssmninsuvsnses 218

Formal Development of Reactive Fault Tolerant Systems
Linas Laibinis, Elena Troubitsyna oo, 234

Network Structure and Traffic Modeling and Simulation with CO-OPN
Dovid Hirzeler «ossssesvinmims spsns soinssoies s8seriasey swimses 250

Balancing Agility and Discipline with XPrince
Jerzy Nawrocki, Lukasz Olek, Michal Jasinski, Bartosz Paliswiat,
Bartosz Walter, Blazej Pietrzak, Piotr Godek 266

Extreme89: An XP War Game
Jerzy Nawrocki, Adam Wojciechowski 278

Aunthor INAex . ::.s:ssimasainesvsmasssnsisissivisesssmpsvimnsss 289

Invited Keynote Speech (Abstract)

Doing More with Contracts: Towards Automatic Tests
and Proofs

Bertrand Meyer

ETH Zurich (Swiss Federal Institute of Technology),
Department of Computer Science,
CH-8092 Ziirich, Switzerland
Bertrand.Meyer@inf.ethz.ch

Abstract. Equipping software with contracts, especially in the case of library
components, opens up a whole range of applications. I will describe two of
them, part of current work in the chair of software engineering at ETH. The first
is automatic, “push-button” testing of contract-equipped components. The
second is mathematical proof that such components satisfy their contracts. In
both cases the effort is made more interesting by the existence of library
versions that are fully contracted” thanks to the use of model classes based on
set-theoretical concepts. Both the tests and the proofs apply to actual libraries as
used in practical software development.

N. Guelfi and A. Savidis (Eds.): RISE 2005, LNCS 3943, p. 1, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using Stepwise Feature Introduction in Practice:
An Experience Report

Ralph-Johan Back, Johannes Eriksson, and Luka Milovanov

Turku Centre for Computer Science,
Abo Akademi University, Department of Computer Science,
Lemminkéisenkatu 14, FIN-20520 Turku, Finland
{backrj, joheriks, lmilovan}@abo.fi

Abstract. Stepwise Feature Introduction is an incremental method and software
architecture for building object-oriented system in thin layers of functionality,
and is based on the Refinement Calculus logical framework. We have evaluated
this method in a series of real software projects. The method works quite well
on small to medium sized software projects, and provides a nice fit with agile
software processes like Extreme Programming. The evaluations also allowed us
to identify a number of places where the method could be improved, most of these
related to the way inheritance is used in Stepwise Feature Introduction. Three of
these issues are analyzed in more detail here: diamond inheritance, complexity of
layering and unit testing of layered software.

1 Introduction

Stepwise Feature Introduction (SFI) [1] is a bottom-up software development method-
ology based on incremental extension of the object-oriented system with a single new
feature at a time. It proposes a layered software architecture and uses Refinement
Calculus [2, 3] as the logical framework.

Software is constructed in SFI in thin layers, where each layer implements a specific
feature or a set of closely related features. The bottom layer provides the most basic
functionality, with each subsequent layer adding more and more functionality to the
system. The layers are implemented as class hierarchies, where a new layer inherits all
functionality of previous layers by sub-classing existing classes, and adds new features
by overriding methods and implementing new methods. Each layer, together with its
ancestors, constitutes a fully executable software system.

Layers are added as new features are needed. However, in practice we cannot build
the system in this purely incremental way, by just adding layer after layer. Features may
interact in unforeseen ways, and a new feature may not fit into the current design of the
software. In such cases, one must refactor the software so that the new feature fits better
into the overall design. Large refactorings may also modify the layer structure, e.g. by
changing the order of layers, splitting layers or removing layers altogether.

An important design principle of SFI is that each extension should preserve the func-
tionality of all previous layers. This is known as superposition refinement [4]. A super-
position refinement can add new operations and attributes to a class, and may override

N. Guelfi and A. Savidis (Eds.): RISE 2005, LNCS 3943, pp. 2-17, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Using Stepwise Feature Introduction in Practice: An Experience Report 3

old operations. However, when overriding an old operation, the effect of the old opera-
tion on the old attributes has to be preserved (but new attributes can be updated freely).
No operations or attributes can be removed or renamed.

Consider as an example a class that provides a simple text widget in a graphical user
interface. The widget works only with simple ASCII text. A new feature that could be
added as an extension to this widget could be, e.g., formatted text (boldface, italics,
underlined, etc). Another possible extension could be a clipboard to support cut and
paste. We could carry out both these extensions in parallel and then construct a new
class that inherits from both the clipboard text widget and the styles text widget using
multiple inheritance (this is called a feature combination), possibly overriding some of
the operations to avoid undesirable feature interaction. Or, we could first implement
the clipboard functionality as an extension of the simple text widget, being careful to
preserve all the old features, and then introduce styles as a new layer on top of this.
Alternatively, we could first add styles and then implement a clipboard on top of the
styles layer. The three approaches are illustrated in Figure 1.

A component is divided into layers in SFI. Layers will often cut across components,
so that the same layering structure is imposed on a number of related components.
As an example, consider building an editor that displays the text widget. In the first
layer we have a simple editor that only displays the simple ASCII text widget. Because
of the superposition property of extension this simple editor can in fact also use the
CutAndPaste, Styles or BetterText widgets, but it cannot make use of the new fea-
tures. We need to add some features to the simple editor so that the functionality of the

BetterText Styles CutAndPaste
CutAndPaste | Styles CutAndPaste Styles
SimpleText SimpleText SimpleText

(a) (b) (c)

Fig. 1. Alternative extension orders

content
BetterEditor BetterText

T]

o

V v
| CutAndPasie—l | Styles —|

Better layer I

[I
Simple layer v l

content
SimpleEditor SimpleText
Editor component Text component

Fig. 2. Interacting components

4 R.-J. Back, J. Eriksson, and L. Milovanov

extended widget can be accessed (menu items for cut and paste, or for formatting, or
toolbar buttons for the same purpose). We do this by constructing a new an extension
of the simple editor (a better editor), which uses the BetterText widget and gives the
user access to the new functionality. The situation is illustrated in Figure 2.

The new editor is, however, restricted to only work on the better text widget, because
the features it assumes are only available on this level. Hence, there are two layers in
the design, the Simple layer and the Better layer.

Stepwise Feature Introduction has been tried out in a number of real software
projects. This allows us now to evaluate the merits of this approach and to spot pos-
sible drawbacks as well as opportunities for improvement. Our purpose in this paper is
to report on these case studies, and to provide a first evaluation of the approach, together
with some suggestions on how to improve the method.

The paper is structured as following: Section 2 present the software projects where
SFI was applied. We summarize our experience with the methodology in Section 3. In
Sections 4-6 we then consider in more detail three interesting issues that arose from
our experiments with Stepwise Feature Introduction. The problems with implementing
feature combinations using multiple inheritance is discussed in Section 4. The problem
of class proliferation is discussed in Section 5, where metaprogramming is considered
as one possible way of avoiding unneccessary classes. In Section 6, we show how to
adapt unit testing to also test for correct superposition refinement. We end with a short
summary and some discussion on on-going and future work.

2 SFI Projects in Gaudi

The software projects where SFI was evauated were all carried out in the Gaudi Soft-
ware Factory at Abo Akademi University. The Gaudi Software Factory is an academic
environment for building software for the research needs and for carrying out practical
experiments in Software Engineering [5]. Our research group defines the setting, goals
and methods to be used in the Factory, but actual construction of the software is done in
the factory, following a well-defined software process. The work is closely monitored,
and provides a lot of data and measures by wich the software process and its results can
be evaluated. The software process used in Gaudi is based on agile methods, primarily
Extreme Programming [6], together with our own extensions.

We will here describe four software projects where Stepwise Feature Introduction
was used throughout. The settings for all these projects were similar: the software had
to be built with a tight schedule, and the Gaudi software process had to be followed. The
programmers employed for these projects (4—6 persons) were third-fifth year students
majoring in Computer Science or related areas. Each project had a customer who had
final saying on the functionality to be implemented. The projects were also supervised
by a coach (a Ph.D. student specializing in Software Engineering), whose main task
was to guide the use of the software process and to control that the process was being
followed. There has also been one industrial software project [7] with SFI, but this is
outside the scope of this paper, as it was not carried out in the Gaudi Factory, and the
software process used was not monitored in a sufficiently systematic manner.

Using Stepwise Feature Introduction in Practice: An Experience Report 5

All of the projects used SFI, but the ways in which the method was applied differed
from project to project. We describe the projects in chronological order below. For each
project, we present the goals: both for the software product that was to be built, and for
the way in which SFI was to be evaluated in this project. We give a general overview of
the software architecture, show how SFI was implemented, what went right and what
went wrong, and discuss the lessons learned from the project.

2.1 Extreme Editor

The Extreme Editor project [8] was the first application of SFI in practice. It ran for
three months during the summer 2001 and involved six programmers. The program-
ming language of the project was Python [9]. The software product to be built was
an outlining editor which became a predecessor for the Derivation Editor described in
Section 2.2. The goal for the project was to obtain the first experience from practical
application of SFI with a dynamically typed programming language. There were no
technical guidelines for the application of SFI except that the extension mechanism for
classes (the feature introduction—Section 1) should be inheritance.

Figure 3 shows the layered architecture of the Extreme Editor. There were eight
layers in the system. Each layer introduced new functionality into the system, without
breaking the old features. The software was structured into these layers in an ad hoc
way. A new layer extended its predecessor by inheriting its corresponding classes and
possibly introducing one or more new classes. There were no physical division of the

StyleDocument

\Vi V V
BasicDocument H BasicWindowH BasicEditorl—>l| Conﬁgl

Fig. 3. The layers of the editor

