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Preface

The papers in these Proceedings are associated with lectures delivered at the
Thirty-Second Summer Research Institute of the American Mathematical Society
devoted to Geometric Measure Theory and the Calculus of Variations. The
Institute was held at Humboldt State University in Arcata, California from July
16 to August 3, 1984 and was financed by the National Science Foundation.

The Institute served as a forum for the large collection of new (and older) ideas
and techniques comprising modern geometric measure theory and its applications
in the calculus of variations. A major theme of the Institute was the introduction
and application of multiple-valued function techniques as a basic new tool in
geometric analysis; Almgren’s basic paper on this subject appears in these
Proceedings. In addition, major new results were announced and discussed during
the Institute. Allard announced his integrality and regularity theorems for surfaces
which are stationary with respect to general elliptic integrands. Scheffer an-
nounced the first example of a singular solution to the Navier-Stokes equations
for fluid flow with an opposing force; this follows his earlier pioneering work on
the possible size of such singular sets. Hutchinson introduced his new definition
of the second fundamental form of a general varifold and gave various applica-
tions including a multiple-valued function regularity theorem. Papers on these
topics are included in these Proceedings.

A session on open problems was also held during the Institute and a list of
eighty such problems appears in these Proceedings.

The organizing committee for the Institute consisted of: William K. Allard,
Frederick J. Almgren, Jr. (co-chairmen); Enrico Bombieri, Robert M. Hardt, H.
Blaine Lawson, Jr., Jon T. Pitts, Richard Schoen, and William P. Ziemer.

The editors would like to thank the many people who cooperated to make the
Institute and this volume possible. Of special direct help were Dottie Smith
(Conference Secretary), Marie D. Byrnes, Susan Hautala and Elaine Wellman
Becker.

William K. Allard

Durham, North Carolina
May 6, 1985
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Proceedings of Symposia in Pure Mathematics
Volume 44 (1986)

An Integrality Theorem and a Regularity Theorem
for Surfaces whose First Variation with respect to
a Parametric Elliptic Integrand is Controlled

WILLIAM K. ALLARD

0. Introduction. The following question is fundamental in the higher dimen-
sional parametric calculus of variations: Suppose C = {(x, y) € R" X R:|x| < 2}
and V is an n-dimensional integral varifold in C with small tilt excess which has
small first variation in C with respect to a parametric integrand which is nearly
translation invariant. Is it true that, given an a priori bound on the n-area of V, the
n-area of V inside {(x, y): |x| < 1} is nearly an integer times the area of the unit
n-disc? We answer this question affirmatively in this paper. In fact, we show in
2.2 that if W is the varifold projection on R" of V inside {(x, y): |x| < 1}, the total
variation of W minus the varifold associated to an integer multiple of the unit disc in
R" is small. 1 call such a result an integrality theorem. It holds for any parametric
integrand; ellipticity is not required. The key lemma used in the proof of the
above integrality theorem may be roughly stated as follows: Suppose u is a
nonnegative measure on { x € R": |x| < 2} whose total mass is not too large and the
flat norm of the gradient of which is small. Then there is a nonnegative constant ¢
such that the total variation of u minus ¢ times Lebesgue measure is small on { x:
|x| < 1}. The proof of this lemma depends on the weak (1,1)-inequality for
singular integrals as stated, for example, on p. 33 of [ES]. I use these results in 2.6
to prove a Lipschitz approximation theorem for general integrands which may be
considered a generalization of a similar theorem in [AW1, 8.12]. This approxima-
tion theorem is the basis for the Regularity Theorem of 3.6 which extends the
regularity results of [AW1] to “nearly all” elliptic integrands in codimension one.
We feel that our methods should yield regularity results for all elliptic integrands
in codimension one and for a large and naturally defined class of integrands in

1980 Mathematics Subject Classification. Primary 49F20: Secondary 49F22, 28A75.

(© 1986 American Mathematical Society
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2 W. K. ALLARD

higher codimension. In particular, we believe the conditions 3.6(1)—(2) are unnec-
essary. In order to use the method of attack in [AWI1] to prove regularity
theorems it seems necessary to establish a height bound as in 3.5. In the present
paper this is accomplished by using barriers and this forces upon us the condi-
tions 3.6(1)—(2). We feel one ought to be able to establish such a height bound
without the use of barriers. It would suffice to establish a lower bound for mass
ratios as in [AW1, 5.1]. These remain outstanding problems.

Conversations with F. J. Almgren, Jr. were helpful in carrying out this work.

0.1. Notation. Throughout this paper, n and N are positive integers and n > 2.
We adopt the notation of [FE]; note the detailed glossary in the back of this book.
We adopt the notation of [AW1]; note the definitions of the various varifold
spaces in [AW1, 3]. In particular, G(n + N, n) is the Grassmann manifold of
n-dimensional linear subspaces of R"""; as is done in [AW1], we frequently
identify S € G(n + N, n) with orthogonal projection of R"** onto S. We let P
be the projection of R"™™ X G(n + N, n) on its first factor R"*". We let p be
projection of R" X R on its first factor R". We will frequently identify R" * " with
R” X RY, writing (x, y) for a variable point in R” X R and writing z for a
variable point in R"*~, We let U(a, r) = {x € R": |x — a| < r} whenever ¢ € R"
and 0 < r < 0. We let e,.....e,, , be the standard basis for R”*" and we let
e'..... e" "N be the standard basis for the dual of R"**.

1. The Strong Constancy Lemma. For v € 2(R") and x € R” we set

x = ylu(y)dL"y ifn=2,

Gu(x) =

2_ n “
n/|x—}| d¥"y ifn>2;

thus, G is a linear map from Z(R") to &(R"). As is well known,

(1) GAu=u forue 2(R")

where A = ¥7_, D D, is the classical Laplacian. We set
Q,u=GDu and P,u= GD,D,u

forue 2(R")andj, k € {1,...,n}.
Supposej € {1,..., n} and consider Q. We have

(2) Q,u=GDu=DGu=s+u forueZ(R"),
where
-/
L a > ifn=2
na(n) |x|?
s,(x) = (2 2
Qo) ! g s s

na(n) |x|"
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for x € R". For any € > 0 we may write s, = a, + b, where a, € £(R") and
[1b,]dZ" < e. It follows that if u, u,, u,... is a sequence in Q(R”) such that
sup{ [|u,|dL": v =1,2,3,...} < oo and K is a compact subset of R” then there
is an £ "-summable R-valued function / on K such that

lim inf /,\ 10u, — lldz" = 0.
Suppose j, k € {1,..., n} and consider P,,. We assert that
(3) 2" x e R |Pyu(x)|> f] lde"

whenever u € Z(R") and 0 < a < o0, and where C depends only on n. For the
proof of this highly nontrivial fact we refer to [SE] as follows. On p. 75 of [SE] we
see that

Q('V,) u(x —y)d&L"

Pyu(x)=cu(x)+ IFIIB e ae 1P
whenever u € Z(R") and x € R", and where ¢ € R and &: R" ~ {0} - R is
smooth and positively homogeneous of degree 0 and has mean value zero on
S" ! An estimate like (3) is made on p. 33, line 3 under the hypotheses of
Theorem 1 on p. 29. The present  does not satisfy the hypotheses of Theorem 1.
However, as Stein points out in the two paragraphs after the statement of
Theorem 1 on p. 29, the part of the hypotheses that the present £ does not satisfy
is not important and is made for short-term technical convenience. To complete
the proof of (3) look at Theorem 2 on p. 35, especially at 3.4 on pp. 37-38.

(4) THE STRONG CONSTANCY LEMMA. Suppose
(a)a € R"and0 < r < o0;
(byu e 2'(U(a, r)),0 < M < oo and

0 <u(ep)<Mr'sup{e(x):x € U(a,r)}

whenever ¢ € 2(U(a, r)) and p > 0
©) f. X/ € 2'(U(a,r)) fori, j€{1,....,n},0 <8 < o0 and

X (@)| +|rf,(¢)] < 8" sup{l@(x)|: x € U(a.r))

whenever ¢ € 2(U(a, r));

(d) X; = (X.....X") forj € {1,..., ny;

() Du=divX, +f forje {l....,n} and

()0 <A <1and0 <e < 0.

There is 8, = 8,(M, A, €) such that if § < 8, then there is ¢ with 0 < ¢ < o0 such
that

(8) r (@) — ¢fyu,® dL" < esup{lp(x): x € U(a, r))
whenever ¢ € 2(U(a, r)) and spt ¢ C U(a, Ar).
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PROOF. We may assume a = 0 and r = 1. Regularizing if necessary by non-
negative approximations to the identity with small supports, we see that we may
assume u, X, and f,, j € {1...., n}, are smooth.

Were the lemma false, there would be M, A and & such that 0 < M < o0,
0 <A <1 and 0 <& < oo; a sequence of positive real numbers p,, p,, p,...
with limit 0; and sequences

u, € £(U(0,1)), X, ,€&(U0.1)) and f, , € &(U(0.1)).
v=1223,....j € {1,...,n}, such that

(5) u,>0 and u,d"< M,
U, 1)

6 X, |+If, |d€" < p,
(6) [ el fde < n
and
(7) Du,=divX, +/f .
whenever v = 1,2,3,... andj € {1,...,n} but such that for each ¢ with 0 < ¢ <
oo and each» = 1,2,3,... we have
(8) [ = clagr> .

U0 \)

Let x € 2(U(0,1)) be such that 0 < x < 1 and x(x) = 1 for x € U(0, A). For
v=1273,...andj € {1,...,n}, let
Ullzxuv‘ Y ZXX'
and
g»./ = (D/x)uv - gradx . XI’./ + Xfl'./
on U(0, 1) and let them be zero elsewhere. It follows from (7) that
Dv,=divY, +g,, j€{l....n},
so that
(9) Av,= Y. DdivY, ,+ ) Dg,
J=1 Jj=1
forv =1,2,3,.... Setting
Z,= ) GDdivY, , and h,= ) GDg,
j=1 j=1
forv =1,2,3,..., weinfer from (1) and (9) that
(10) v,=2Z,+h,, v=1,23...

Passing to a subsequence if necessary, we infer from (5)—(7) and the constancy
theorem for distributions that there is a ¢ such that 0 < ¢ < oo and such that

(11)  lim u,,q>d$"=cf pdP" foreachp € 2(U(0,1)).
=00 YU, 1) U, 1)
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It follows from (6) that

(12) lim f(pZ,,dé”"= lim — ¥ fgrad DGy - Y, d&"
Vv — 00 V—0oC /=l
=0 wheneverp € 2(R").

Using (5) and our observations about the operators @, j € {1,..., n}, and
passing again to a subsequence if necessary, we obtain an .#"-summable real-
valued function / on spt x such that

(13) lim f lh, — lld£" = 0.
Ve Yspt x
It follows from (11)—(13) that
(14) I(x) =cx(x) for#"almostall x € spt x.
Most importantly, we infer from (3) and (6) that

2 on
(15) 2 xeR:|Z,(x)]> a) < - Y [
U 0.1)

8

X, |dL"

j=1

Cn?

< n
= y
a Ty

forr =1,2,3,... and 0 < a < oo.
Now suppose 0 <1 < oo. Foreachrv =1,2,3,... let G, = {x € R |Z,(x)| <
n}andlet B, = {x € R": |Z,(x)| > n}. From (15) we infer that

(16) lim %"(B,) = 0.

Y-=*.00

We have

-/;;y U,,df”=fx(uy—c) a’i”"—'/;; x(u, —c) d.,?”—i—c'/&xd.f”.

Using (11), (16) and the fact that v, > 0 we infer that

(17) limsup [ |v,|< nZ"(sptx).
B,

v— 00

Finally, we estimate
[ o —exlder < [ 1Z)+1h, = exlde” + [ o]+ clxlde”
U, 1) G, B,
so that, by virtue of (13), (14) and (16),
lim sup lvo, — ex|dL" < 29" (spt x).
v— o0 U@, 1)

Taking 7 so that 21.%"(spt x) < & we contradict (8). O



